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Abstract—The observability characterization of an Electric
Power System (EPS) from a topological point of view with
respect to a given measurement acquisition system is equivalent
to the existence of a certain spanning tree. In previous work, a
genetic algorithm was developed in order to address this issue.
In this paper the behavior of this evolutionary algorithm is
studied by means of probabilistic methods. Although the main
purpose of the algorithm is to find a tree, the determination of
the non-existence of the tree due to the uncertainty inherent to
evolutionary techniques was addressed using statistical hypothesis
testing. This allows to characterize, with a given certainty level,
the non-existence of such a solution and, therefore, the non-
observability of the EPS. The techniques developed in this paper
were tested over two benchmark systems: the IEEE networks
with 118 and 300 nodes.

I. INTRODUCTION

The places over a region or a country where electric energy
is generated (sources) and where it is consumed (loads or
drains) are separated hundreds or thousands of kilometers
from each other. Electric Power Systems (EPS) are in charge
of guaranteing that electricity is available wherever it is
demanded. The most visible elements in an EPS are the high
voltage transportation lines and the substations where these
lines are incident. The resulting topology is typically a mesh
and is known as electric power network. Therefore, graphical
terminology is commonly used to describe the network, where
sources, loads and power transformers are identified with the
nodes while branches are the lines that join those elements.

Such a system is constrained by the equations derived from
electrical circuit theory, the network topology and the value of
the parameters that characterize the system. The state variables
are defined as a minimum set of electrical variables from
which any other system variable can be calculated by means of
the equation system. Thus, it is said that the state of a system
is known when the entire state variables are also known, and
the process to evaluate it is known as state estimation, first
described by Schweppe et al. in [1].

In order to address the problem of estimating the state of
a system, it is necessary to acquire a collection of electric
measurements throughout the network that allow formulating a
sufficient number of independent equations. A system variable

is said to be observed if it is directly measured in the network.
A system variable is said to be observable with respect to a set
of measurements if it can be estimated from the available data.
By extension, an EPS is said to be observable with respect to
a given measurement acquisition system if the entire state of
the system can be estimated. Otherwise, the system is said to
be not observable or unobservable.

Two main strategies can be distinguished in the literature
in order to address the observability analysis in EPS. On
one hand, numerical and algebraic methods, starting with the
contribution of Monticelli and Wu in [2], where the approxi-
mate model suggested in [1] is assumed. In this model, only
node voltages and active and reactive power injections and
flows are considered in the measurement acquisition system,
grouped in two categories: node measurements when they are
associated to nodes and branch measurements when they are
acquired in network branches. Besides the techniques proposed
in [2] other algorithms were developed [3][4], numerical
observability analysis was extended into new considerations
[5][6] and other variables where included in the measurement
set [7][8].

On the other hand, topological approaches arise from the
work of Krumpholz et al. in [9], where the authors establish a
necessary and sufficient condition for topological observability
by means of the existence of certain spanning tree within
the system network. This tree must be constructed from
the measurement set considered in such a way that each
branch is associated to one measured variable in accordance
to a series of assignment rules. Thus, any technique focused
on topological observability determination must search for
any spanning tree among all graphs included in the system
network that fit the assignment rules depending on a given
measurement set. Different approaches to this issue can be
found in the literature: combinatorial [10], combinatorial and
matroids to characterize graphs [11], neural networks [12][13]
and evolutionary techniques [14][15][16].

In previous work [16], an evolutionary technique was de-
veloped for which the behavior of the algorithm was studied
in terms of convergence, that is, how good the algorithm was
at finding a valid spanning tree and how fast it was. In spite of



the fact that the convergence was reached in a high percentage
of cases, a natural question arises: what happens when the
algorithm does not find any valid spanning tree? May it be
concluded that the system is not observable? The response to
this last question is, of course not, mainly because all the tests
were run over observable configurations.

The aim of the present work is to study the non-
observability condition and how it can be characterized by
means of evolutionary techniques in conjunction with statis-
tical theory. For that purpose, the IEEE networks with 118
and 300 nodes were considered as benchmark systems for
which up to one hundred measurement configurations were
defined. In order to characterize the behavior of the algorithm
statistically, 150,000 simulations were run over the above sys-
tems and measurement configurations. In this paper, the results
of these tests are briefly presented and some conclusions are
reached about the characterization of non-observability.

The rest of the paper is organized as follows. In section II
a summary of the main points dealt with in [16] is shown.
In section III the benchmark networks and their measurement
configurations considered in tests are introduced. Section IV
is devoted to describing how the tests were designed and pro-
gramed and how and what data should be taken into account.
In section V a statistical hypothesis testing is introduced in
order to characterize the non-observability of a system. A
summary of the results reached in the work is shown in section
VI. Finally, conclusions are presented in section VII.

II. PREVIOUS WORK

All the measurements taken into account in [16] and in
the present work are categorized as branch measurements
or node measurements. The first group consists of active
and reactive electric powers that flow through a branch and,
therefore, whose values are measured at that branch. Node
voltage measurements and active and reactive powers injected
in a node are grouped as node measurements. Figure 1 shows
an example in which a seven node network represents the
topology of an electric power system. A total of six power
measurements were numbered and highlighted with thicker
lines in the figure: three node measurements, ordered from
1 to 3 at nodes 2, 4 and 6, respectively; and three branch
measurements, ordered from 4 to 6. It is also assumed that
the voltage of at least one of the network nodes is known.

A. Graph Construction

Given an electric power network and a measurement ac-
quisition system, a set of measurement assignment rules are
described in [9] in order to construct graphs in the network,
as follows:

• Each branch measurement is assigned to the branch of
the network corresponding to its position.

• Each node measurement is assigned to one and only one
of the branches incident to the node.

Any graph constructed in such a way is known as a graph of
full rank and the search space for the evolutionary algorithm
is made up of all the graphs of full rank within the network.

Fig. 1. A seven node network example and a collection of three node and
three branch measurements

Figure 2 shows a graph of full rank belonging to the search
space resulting from the above mentioned example and its
associated measurement system. Each edge in the graph is
assigned to one of the measurements considered. Note that
oriented edges are stated in the figure in order to clarify the
measurement from which those branches are derived.

B. Encoding

Each gene in the adopted encoding scheme consists of an
integer value that points to the branch assigned to a given
node measurement. Thus, a chromosome has as many genes
as node measurements. Note that the branches associated to
branch measurements are contained in all the graphs in the
search space.

The numbers displayed in Figure 2 close to the edges
derived from node measurements correspond to an arbitrary
numbering of branches previously held in the range from
zero up to the maximum number of node incident branches
minus one. These collection of integer values form the graph
encoding, as shown in the figure.

C. Fitness Criteria

A fitness vector made up of three integer values has been
defined insted of a fitness function. If two graphs must be
compared, the first indices of the fitness vector are checked.
Only when these are equal are the second ones compared, and
so on. These three indices have been defined as follows:

1) ind1 = nodes in the graph − subgraphs in the graph
2) ind2 = number of subgraphs in the graph
3) ind3 = nodes of the smallest subgraph in the graph
Since the graph in Figure 2 consists of six connected nodes

in a unique subgraph, the values of the aforementioned fitness
indices are given by 5, 1 and 6, respectively. The variation of
a gene in the encoding is equivalent to the reassignment of the
associated node measurements to a different network branch,
as shown in Figure 3, which results in a different graph and,
occasionally, a different fitness vector. In particular the graph
in Figure 3 is considered a better qualified graph than the
previous one because the isolated node 5 has joined another
node, in spite of the fact that the largest subgraph is smaller



chromosome = [ 1 0 2 ]

fitness vector = [ 5 1 6 ]

Fig. 2. Graph of full rank with six connected nodes

chromosome = [ 1 0 1 ]

fitness vector = [ 5 2 2 ]

Fig. 3. Graph of full rank with two subgraphs

chromosome = [ 4 0 1 ]

fitness vector = [ 6 1 7 ]

Fig. 4. Spanning tree of full rank

than in Figure 2. Eventually, the evolutionary algorithm may
reach a graph like the one in Figure 4, which joins all the
network nodes in an unique subgraph.

III. TEST CASES

The IEEE 118 and IEEE 300 node networks used in these
tests are frequently used as benchmark EPS in literature.
These data can be found in [17]. In order to characterize the

TABLE I
BENCHMARK NETWORKS

Measure Sample Carried out
Network Nodes Branches config window simulations

IEEE-118 118 179 50 50 100,000
IEEE-300 300 409 50 70 50,000

behavior of the evolutionary algorithm, it was necessary to
design a large enough number of measurement configurations
and, therefore, reproduce a statistically significant case set in
tests. The idea consists in characterizing the non-observability
condition by means of the characterization of the behavior
over observable cases, by exclusion. This is the reason why
all the measurement configurations considered are observable.
Therefore, the evolutionary algorithm is said to have converged
when any spanning tree of full rank is reached in the search
space. In what follows, the number of generations needed for
convergence will be the subject of study. Convergences will
be taken into account if they take place in a fixed number of
generations which is denoted as sample window. Table I shows
a summary of the networks used in the tests as benchmark
cases.

The measurement configurations were deliberately designed
to subject the algorithm to the most complex scenarios and, in
particular, much more complex than in real cases. Hence, the
results are more pessimistic than in real environments. That is
true because of the following two reasons:

• The measurement configurations considered are, all of
them, critically observable, that is, there are no redundant
measurements.All the measures are said to be critical
because the lack of any one would make the system
unobservable. Due to the fact that a spanning tree has
as many branches as nodes minus one and any branch
is associated to one measurement, the number of mea-
surements in each configuration is equal to the number
of network nodes minus one.

• Most of the measurements are node measurements instead
of branch ones, and the larger the number of node
measurements, the larger the size of the chromosome.
Figure 5 shows in logarithmic scale the size of the
search space for each of the measurement configurations
for the IEEE 118 node network. The number of node
measurements grows with the order of the configuration
system, resulting in spaces in the range of 9.4× 1025 up
to 3.6× 1050 graphs of full rank. The larger ones corre-
sponding to a configuration with 117 node measurements.
In the case of the IEEE 300 node network, the number
of graphs in the search spaces goes from 2.2 × 1057 up
to 2.6× 10106.

In general, the measurement acquisition systems in real EPS
are clearly redundant and there exist a significant number of
branch measurements.
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Fig. 5. Search Space Size Resulting for the Evolutionary Algorithm and the
50 Measurement Configurations Designed for the IEEE 118 Node Network
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Fig. 6. Algorithm Frequency Convergence for the IEEE 118 Node Network
and a Given Measurement Configuration with 77 Node Measurements and 40
Branch Measurements

IV. PROGRAMMED TESTS

Starting with the IEEE 118 node network, a pilot sampling
was carried out to determine how the sample space seems
to be. For that purpose, the Chebyshev’s inequality was
considered:

P (|X − µ| < kσ) ≥ 1− 1

k2
(1)

where X denotes the random variable, that is, the number of
generations needed to reach the convergence of the algorithm,
µ is the finite expected value of X , σ denotes the non-zero
standard deviation and k is a positive real number. After
these pilot results, it could be seen that in 75% of cases, the
convergence of the algorithm had occurred before the first 30
generations and the expected number of generations needed
was around 10 generations. Therefore, from (1) it can be
established that the standard deviation σ should be less than
10 generations.

Thus, a sample window of 50 generations was fixed and a
minimum sample size n can be determined by minimizing the
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Fig. 7. Convergence of the Evolutionary Algorithm after Running 50
Measurement Configurations × 2000 Simulations over the IEEE 118 Node
Network
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Fig. 8. Algorithm Frequency Convergence after Running 50 Measurement
Configurations × 2000 Simulations over the IEEE 118 Node Network

error in the estimation of the mean of X for a given tolerable
error α = 0.05 from the equation:

ε = ±zα/2 ·
σ√
n

(2)

resulting in an error of ε = ±0.44 generations for a sample
size of n = 2000 simulations.

One of the main contributions emphasized in [16] was the
good behavior of the evolutionary algorithm in terms of the
number of generations needed to reach convergence. Figure
6 shows the frequency convergence diagram after evolving
populations of 1000 graphs a total number of 2000 times for
a given measurement configuration over the IEEE 118 node
network. A box plot of the generations needed for convergence
is also stated in the figure in order to point out the median
and the 25th and 75th percentiles.

In brief, the evolutionary algorithm was run 2000 times for
each of the 50 measurement configurations designed for the
IEEE 118 node network. The entire number of simulations
carried out was 100,000, in which populations of 1000 graphs



TABLE II
SUMMARY OF RESULTS OBTAINED IN THE TESTS WITH IEEE 118 AND

300 NODE NETWORKS

Network S̄ X̄ εX̄ p̄ εp̄ np (1− p)np

IEEE-118 7.41 11.26 ±2.05 0.75 ±0.12 4 0.0041

IEEE-300 15.57 30.88 ±4.32 0.45 ±0.14 8 0.0087

were evolved. The convergence was registered when it was
reached in the sample window of the first 50 generations. Fig-
ure 7 shows convergence results for each of the 50 measurment
configurations (horizontal axis, ordered from 1 to 50), where
circles denote the mean number of generations estimated for
the convergence in the given sample window (left scale) and
crosses denote the percentage of convergences reached in the
sample window (right scale). Figure 8 shows how the behavior
of the algorithm when all the measurement configurations are
taken into account is the same as the one shown in Figure 6
for a given measurement system.

Note that the values shown in Figure 7 are, in themselves, a
new sampling of algorithm convergence for any configuration
of measurements, and from this new data the estimation of the
generations expected to reach convergence X̄ and the error
of this estimation εX̄ can be calculated. Let x̄i and s̄i be
the estimated mean and standard deviation, respectively, after
having run the entire simulations with the i-th measurement
configuration. Then, after nm = 50 batteries of tests, one for
each measurement system, it follows that

X̄ =
1

nm

nm∑
i=1

x̄i (3)

and the sampling standard deviation S̄ is given by

S̄ =
1

nm

nm∑
i=1

s̄i (4)

that allows to calculate εX̄ from (2). The values obtained for
these statistical variables for a given tolerable error α = 0.05
are shown in Table II.

V. NON-OBSERVABILITY CHARACTERIZATION

In this section, the non-observability characterization will
be achieved by means of statistical hypothesis testing. For
this purpose, the probability of the algorithm converging in
a sample window when the system is observable is first
analyzed.

Let’s consider the IEEE 118 node network and let pi be the
probability of reaching the convergence of the algorithm in the
sample window for the i-th measurement configuration. The
estimation of the probability of convergence for any observable
configuration p̄ can be given by the harmonic mean as follows:

p̄ = nm

(
nm∑
i=1

1

pi

)−1

(5)

TABLE III
STATISTICAL HYPOTHESIS TESTING, TRUE PANNEL

Null The System is The System is
Hypothesis Observable Not Observable

Accepted Right Type II Error

Rejected Type I Error Right

and the error of this estimation is given by:

εp̄ = ±zα/2

√
p̄ (1− p̄)
nm

(6)

From the values of these variables shown in Table II for the
IEEE 118 node network and a given tolerable error α = 0.05,
it follows that, for any observable measurement configuration,
there exists 95% percent probability that the per unit number
of cases to reach the convergence in the first 50 generations
is limited by:

L = (0.63; 0.87) (7)

where L is the confidence interval of p̄ for a given tolerable
error α.

Note that this result allows characterizing in statistical terms
the non-observability of an EPS by means of hypothesis
testing.

Let a measurement configuration be considered for which
the observability condition is not known. The evolutionary
algorithm is run a given number of times np in such a way that
the processes can be considered as independent events. Let p
be the per unit number of cases that the algorithm converges
in the sample window. A null hypothesis can be established:

H0 = The system is observable (8)

that must be contrasted with the alternative hypothesis given
by

H1 = The system is not observable (9)

Then, depending on accepting or rejecting the null hypothesis,
one of four situations can take place, as shown in Table III.
The scenarios where the diagnosis is wrong are of interest in
terms of probabilities of that occurring. Let the next two cases
be considered:

• The system is not observable: In this case, no algorithm
will reach convergence and, then, the probability of
concluding that the system is observable is null. In other
words, the probability of a type II error being committed
is zero.

• The system is observable: The probability of a given
process reaching convergence in the sample window is
1 − p, while the probability of no process converging is
reduced to (1 − p)np . As a result, the significance level
of the test, that is, the probability of incorrectly rejecting
the null hypothesis, which is known as type I error is
(1− p)np .

At the same time and independently of the probability of
convergence taking place, the registration of a convergence in



any of the processes characterizes unambiguously and with
certainty the observability of the system.

In summary, after the statistical analysis of the behavior of
the evolutionary algorithm over a given EPS, it is possible to
characterize non-observability conditions of any measurement
configuration by means of a number of independent processes
np and statistical hypothesis testing with a significance level
limited by (1− p)np .

Table II shows that 4 independent process are necessary to
reach a significance level of the test of less than 1% with
the IEEE 118 node network. In other words, the statistical
study carried out for this network has determined that at least
one among four independent processes will reach convergence
in the sample window if the measurement configuration is
observable. This is true for a given tolerable error but, as
the tested measurement configurations were designed much
more restrictively than those in real operation scenarios, it
is plausible to conclude that the significance level of the
hypothesis testing is less than previously mentioned.

Similar tests were carried out with the IEEE 300 node net-
work, for which 50 measurement configurations were designed
and where 1000 simulations were run for each measurement
system. The populations were of 6000 graphs and they were
evolved in a sample window of 70 generations. Table II shows
a summary of the results for this network. It can be seen that
8 independent processes bring the significance level of the
non-observability characterization to values of less than 1%.

VI. RESULTS

The results achieved in this work can be summarized as
follows:

• The evolutionary algorithm has been subjected to multiple
measurement scenarios and different EPS and, in all of
them, the convergence in terms of number of generations
needed to reach the convergence in a sample window was
studied. This has allowed to describe the behavior of the
algorithm by means of statistical patterns.

• This statistical characterization has been carried out for
any given EPS and a large enough number of observable
measurement configurations.

• Although the evolutionary algorithm was designed to
find a spanning tree of full rank in a search space of
graphs, the characterization of the non-existence of such
a tree was carried out by means of statistical hypothesis
testing. In other words, in spite of the fact that the
behavior of any evolutionary algorithm is affected by
uncertainty, implementation scenarios were defined in
order to characterize, with a given certainty level, the
non-existence of a solution.

• Although these techniques were designed for the particu-
lar case of measured EPS, they could be put into practice
with other real cases in which the non-existence of a
solution is relevant.

VII. CONCLUSION

In this paper, a genetic algorithm in conjunction with
statistical methods have been put into practice in order to
address certain aspects of a particular problem that is not well
solved only using evolutionary techniques. In particular, these
methods were implemented to address the non-observability
analysis of a given EPS with respect to a measurement
acquisition system. A series of observable measurement con-
figurations were designed for which batteries of tests were run.
The results obtained have allowed to describe the behavior
of the evolutionary algorithm for the EPS and any given
measurement configuration in terms of statistical patterns.
Finally, the non-observability condition characterization was
achieved by means of statistical hypothesis testing. All the
tests and results shown in this paper were carried out over
the IEEE benchmark networks with 118 and 300 nodes. It
is plausible to conclude that the techniques developed in this
paper are not exclusive to the non-observability of EPS issue
and they could be implemented in other real cases.
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