
  

Abstract - Heuristic constructive algorithms have been 

widely and successfully applied to the solution of routing 

problems. Since they generally consist of an iterative 

insertion of nodes to construction routes, prioritization rules 

for assignments is critic for algorithm’s performance. 

Developing these rules is time consuming and relies much on 

researcher skills and knowledge on problem features. This 

paper proposes a systematic methodology for a widespread 

exploration of prioritization rules aiming at reducing human 

effort on its development. A general model for prioritization 

is achieved by means of an artificial neural network. 

Parameters are tuned for the specific problem by an 

evolutionary strategy search. The methodology is formulated 

for generic routing problems and applied to VRPTW to 

illustrate its operation and as a preliminary assessment of its 

capabilities. Neural networks are evolved for Solomon’s 

benchmark instances and analyzed to gain knowledge on 

underlying rules. 

 

Keywords - Prioritization rules, node assignments, 

VRPTW, neural network, evolutionary strategy. 

 

 

I.  INTRODUCTION 
 

 Routing problems constitute one of the most well 

known and characteristic problems in operations research. 

They play a central role in logistics due to the relatively 

high importance of distribution costs in supply chain [1].  

 In general terms, routing problems deal with finding 

an optimal or quasi-optimal set of routes for rendering the 

corresponding services - freight transportation, repair 

services, passengers transportation, etc. - to a given set of 

customers or suppliers geographically distributed and 

connected by a transportation network. But most of 

routing problems are NP-complete combinatorial, which 

implies high computational costs when aiming to find 

optimal solutions. This has lead to a widespread 

development of heuristic and metaheuristic approaches, 

more suitable for real applications. 

 Some of the most classical and studied problems 

include the TSP, the CVRP or the one in which this work 

is focused, the VRPTW [2]. Common approaches to solve 

routing problems include optimal algorithms, heuristic 

algorithms and metaheuristics.  

 Currently, main trends in routes optimization research 

include the definition of new problems closer to 

applications in real environments [3], research of new 

hybrid algorithms with higher performance and 

generalization capabilities [4] and the improvement of 

existing solution techniques.  

 In this paper, a hyper-heuristic methodology [5] is 

introduced in order to develop a systematic procedure for 

the exploration of heuristic constructive rules. Our 

methodology is aimed to be suitable for general routing 

problems in real environments. It is applied to the solution 

of the VRPTW as an initial study to evaluate its feasibility 

and to identify the main aspects for its future 

improvement. 

 

II.  METHODOLOGY 

 

 In this section, a generic routing problem is 

formulated according to notation used in [6]. A generic 

routing problem is an optimization problem that consists 

of finding a set of routes that minimizes a cost function 

given a transportation network and the problem 

constraints. Let   *   + be the graph of the 

transportation network where V denotes the set of nodes. 

A route is a walk in V:   *                        
     (       )+. It might be closed or not depending 

on problem constraints. | | is the number of nodes in a 

route. 

 Let RG be the set of all routes in G. The cost function 

of a route is a function        . A solution S to the 

routing problem is a set of routes that verifies problem 

constraints and   the set of all solutions. A solution cost 

is the sum of its routes costs 

 ( )  ∑   (  )             | | . A route R is 

feasible if         . A solution is optimal if its cost 

is lower than or equal to every other solution:  (  )  
 ( )      . A routing problem aims at finding   . 

 An assignation is defined as a pair node-route. 

     (     )  *           + . Every assignation 

defines an extended route of Rα as the route formed by 

adding the node at the end of the route.     

{                   }. The cost of an assignation is a 

function that represents the difference between the cost of 

the initial and extended routes.   (   )    (   )  
  (  ). Every route can be obtained as a sequence of 

assignations starting from an empty route.  

   *         +  
*  (     )    (*           +    ) +  (1) 

 An assignation is said feasible if the extended route is 

feasible. A feasibility function for every assignation is 

such that its value is 1 if it is feasible and 0 if not      

{
        
           

.It can be easily proved that a route is 
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feasible if and only if all the assignations necessary to 

obtain it are so.  

 Since every route can be decomposed into a sequence 

of assignations, a solution can be also regarded as a set of 

feasible assignations. A partial solution is a set of 

assignations such that any solution contains all of them. 

The feasibility of an assignation given a partial solution 

depends on the latter one. 

 Constructive algorithms [7] are based on a sequential 

performance of assignations. Initially, all the vertices 

remain unassigned and the construction routes are empty. 

In every step, a set of feasible assignations is performed 

and thus the construction routes extended with non-

assigned vertices. Once an assignation is performed, the 

set of solutions that can be achieved by the algorithm is 

reduced and consequently the solution found might not be 

optimal. Thus, the prioritization of the feasible 

assignations in each step is critical. 

 The prioritization rules can be modeled by a 

prioritization function of a set of factors that characterize 

the assignation:       (  (   )      (   ) ) , where 

  (   ) is each one of the assignation factors and NF the 

total number. These factors should be specifically defined 

for each problem. Ties in priority might be broken 

randomly or by a proper selection of the model. 

 The pseudo-code for a constructive algorithm is the 

following: 

 L0 is the set of non-assigned vertices. 

 CR is the set of construction routes. 

1.     . 

2. Search assignation      such that (      )  
(                  |  |       |  |). 

3. Add vertex     to route    . 

4. Remove     from   . 

5. If      return to 2. 

 

 The basis of our method is the substitution of 

predefined prioritization rules for a parameterized model 

      (  (   )      (   )         ) , where 

        represents the parameters of the model. Due to 

parameterization, optimization techniques can be applied 

for model tuning. 

 The methodology involves the following steps given 

a specific problem: 

1. Define constraints and feasible assignations. 

2. Select a set of assignation factors which are 

determinant for algorithm’s performance.  

3. Choose a parameterized model for the priority 

evaluation. 

4. Adjust model parameters by an optimization 

technique. 

5. Check possible correlations among factors in 

order to simplify the model. 

6. Check model’s sensitivity to the factors and 

remove those which lack a significant effect. 

7. Analyze obtained rules. 

 Appropriate selection of the input factors to the 

model is necessary for a good performance. This step 

relies much on the researcher experience. However, it 

might always be chosen an initial wide set of factors to be 

further improved by analyzing the model. Once the 

factors are selected, the model should be capable to 

represent a wide set of rules in order to perform an 

intensive exploration.  

 Our model for the prioritization function is a neural 

network. Specifically, we use a multilayer perceptron with 

sigmoid activation function due to its capability to 

approximate every real continuous function, and also non 

continuous if used more than one hidden layers [8]. The 

parameters of the model are the weights and bias of the 

connections between neurons. The input factors are 

normalized into the range 0-1. The output of the net is the 

priority. 

 Given a set of model parameters, the solution to the 

routing problem is unique, so that it is possible to define a 

cost function of the parameters as  (       )  
∑   (  )       . Thus routing problem has been 

transformed into searching for the parameters vector that 

minimizes the cost. Since two models’ cost can only be 

different because of producing different assignations, the 

cost function is a non-continuous function. Cost remains 

constant in regions which lead to equal solutions. 

 Evolutionary search is an optimization technique 

appropriate for optimizing the neural network model. 

Gradient methods are unavailable since objective function 

is stepped. The number of parameters in a neural network 

is high so the optimization problem is highly dimensional. 

Evolutionary search allows a wide exploration of 

parameters and avoid local optimal solutions. 

 Once a model has been evolved, it comes the time to 

analyze its properties to improve it and gain information 

about the produced rules. Input factors may present 

correlations that make the model more complex without 

providing extra information. Thus, independence tests 

might be applied among the components of the inputs 

generated in the problem solution. A test for 

independence based on an empirical Copula process [9] 

has been used. This is a non-parametric test suitable for 

multidimensional independence analysis. It allows not 

only analyzing the independence between pairs of 

variables, but also the joint correlation among all the 

subsets of variables.  

 The model’s sensitivity to input variables is analyzed 

by means of the priority function partial derivative with 

respect to each input at every vector generated in the 

solution. The distribution of this derivative on generated 

data gives us the factor’s relevance.  

 A complementary way to check the effect of a factor 

on the priority is to plot the joint distribution of each 

factor and the priority for data generated in the solution. 

This can also aid to check the normalization of factors. 

 Finally, it is proposed to obtain a set of plots of the 

priority as a function of each factor for random values of 

the other factors. This is helpful when studying the 

different behaviors that the model may produce. 

 



 

III.  APPLICATION TO VRPTW 

 

 The VRPTW is a generalization of the capacitated 

vehicle problem in which time constraints are defined for 

visiting the nodes. Let ni be the node identified by 

subscript i and N the number of nodes. Then qi is the 

demand of node ni, toi the opening time at ni, tci the 

closing time at ni, tsi the service time, dij the distance 

between ni and nj, and tij the time to travel from ni to nj. 

No assumptions about distances or travel times are 

imposed so that the following procedure might be applied 

to problems with non-Euclidean distances or asymmetric 

distance matrix. 

 The constraints for solution routes involve the 

following, where: 

 Rk is the route for which node ni is assigned. 

 The arrival time in the route to ni is tai. 

 The departure time in the route from ni is tdi. 

∑    

  |  |

             (2) 

                (3) 

                   (4) 

 The set of factors used as an input for the 

prioritization model was intended to be wide to provide 

new and complex rules. A set of sixteen parameters were 

selected. To introduce these parameters, it is used the 

following notation: 

 Given a sorted list L and its element ei, then the order 

of the element is its position in the list sorted from 

minimum to maximum and it is noted as O(ei, L). 

 The assignation with subscript α for which the 

parameters are defined is the pair route-node (Rk, vi). 

 The set of feasible assignations in the given step is 

LA.  

 The route head node (RH) is the last node of a given 

route. 

 The direct gain of an assignation is the gain obtained 

by performing an assignation compared to the second 

best possible assignation to the route. Thus: 

          {                  {      }}  

        (5) 

 The total gain of an assignation is the direct gain 

obtained by performing an assignation compared to the 

second best direct gain to assign the node. 

               {       
        

 

    {       
}}  (6) 

 The normalization waiting factor (WNF) is used to 

normalize waiting times and can be set up according to 

characteristic time units in the problem. 

 Direct degree of a node δ(vi) is the number of feasible 

assignations to a route ended by it. 

 Inverse degree of a node δ’(vi) is the number of 

feasible assignations to a route ended by it. 

 

1. Relative total gain for all the selected 

assignations.  

       
    

        ( )
     (7) 

2. Relative total gain to route. 

       
    

        
      (8) 

3. Waiting factor at the assigned node. 

      {

 

  
       
   

           

     (9) 

4. Arrival time factor. 

       
   

       
       (10) 

5. Centrality factor. 

     
    

        
       (11) 

6. Centrality order. 

      (     {            })  (12) 

7. Closing time factor. 

     
   

       
       (13) 

8. Closing time order. 

      (    {           })  (14) 

9. Inverse degree factor. 

     
  ( )

 
        (15) 

10. Direct degree factor. 

     
 ( )

 
        (16) 

11. Assignation demand factor. 

       
∑       

   

 
      (17) 

12. Assigned rate. 

   
|  |

 
        (18) 

13. Centrality factor of route. 

       
 

      

          

     (19) 

14. Centrality order of route. 

       
  (      

 {      
        }) 

 (20) 

15. Route load factor. 

     
∑        

 
      (21) 

16. Direct degree fraction of the route. 

     
 (   )

 
       (22) 

 

IV.  EXPERIMENTATION AND RESULTS 

 

 The algorithm has been coded in JAVA. As 

benchmark of problems to evaluate this methodology, we 

employ the Solomon Instances. In order to reduce the 

time necessary for models evolution, only the first 25 

nodes plus the depot of each instance are considered. 

 As benchmark of problems to evaluate this 

methodology, we employ the Solomon Instances. In order 

to reduce the time necessary for models evolution, only 

the first 25 nodes plus the depot of each instance are 

considered. 

 The multilayer perceptron used has one hidden layer 

with 4 neurons. Slopes of activation functions are fixed to 

0.5 with the aim to reduce the number of parameters in 

the model. This means that a set of 73 parameters are 

needed to code the net weights and bias. Maximum and 



 

minimum weight values and bias are limited to +8 and -8 

respectively.  

 
 For the neural network parameters optimization an 

evolutionary strategy is used. Genes in the chromosome 

are the net weights and bias. The objective function is the 

total distance calculated solving a problem or a set of 

problems. The search algorithm used in this work is the 

Differential Evolution strategy as defined in [11]. The 

parameters used for the evolution are        and 

        .  

 Algorithm’s performance is high (see table I), 

especially in the cluster type problems. In most of cases it 

is able to reach quasi-optimal results. 

 The solution analysis involves large amounts of 

generated data. Hence, in this paper only a piece of 

analysis is shown in order to illustrate its operation. The 

instance was randomly chosen and it is the problem 

RC108. First step is the analysis of independence among 

input vector components. It is performed using the 

statistical package R [12]. Independence test based on 

empirical Copula process is applied and generates as a 

result a dependogram which is used to identify associated 

factors. As it was expected, factors with analogous 

definition as the centrality factor and centrality order are 

found to be high correlated. 

 
 The components of neural network gradient are sorted 

according to average derivate (see Table II). In this case, 

two factors related to time window constraints are found 

to be the most relevant. They are the TAF (10) and CTF 

(12). This is characteristic of a problem in which time 

windows are the most restrictive factor. These rules are 

such that nodes with earlier arriving time from routes and 

earlier closing times are the most prioritized. The three 

following rules prioritize routes far away from depot, low 

vehicle load and low degree nodes. 

 

 
Fig. 1.  Priority as a function of TAF generated by the ANN and 

distribution of values calculated during resolution of instance RC108. 

Green rectangle marks high priority assignations.  
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  TABLE II 

MODEL DERIVATIVE WITH RESPECT INPUT FACTORS 

 

Factor 
Average 

Derivative 
Mex. Derivative 

 

TAF -0.479 3.058 

CTF -0.441 2.782 

CNFR 0.366 2.353 

RLF -0.351 2.228 

DDF -0.229 1.526 

WT 0.165 1.409 

ADF 0.149 0.951 

CNF 0.142 0.917 

RGR 0.131 0.877 

CNO 0.116 1.125 

RTG 0.113 0.729 

AR -0.110 0.708 

IDF 0.107 0.761 

CNOR 0.100 0.701 

DDF 0.065 0.521 

CTO -0.059 0.975 

 

  TABLE I 

RESULTS TO SOLOMON 25 NODES INSTANCES 

 

Case Distance 
Dif. to 

optimal* 
Case Distance 

Dif. to 

optimal* 

RC101 474.40 2.82% R201 467.70 0.95% 

RC102 362.66 3.09% R202 435.84 6.17% 

RC103 339.00 1.86% R203 424.76 8.52% 

RC104 317.38 3.52% R204 373.15 5.11% 

RC105 423.11 2.87% R205 412.40 4.94% 

RC106 356.73 3.25% R206 394.91 5.48% 

RC107 299.50 0.40% R207 393.83 8.91% 

RC108 296.83 0.79% R208 357.97 9.07% 

RC201 364.01 1.06% R209 386.23 4.19% 

RC202 359.37 6.32% R210 415.31 2.65% 

RC203 356.40 9.02% R211 355.64 1.35% 

RC204 324.32 8.22% C101 191.81 0.27% 

RC205 355.59 5.20% C102 190.74 0.23% 

RC206 333.33 2.88% C103 201.54 7.83% 

RC207 309.63 3.80% C104 194.58 1.72% 

RC208 279.61 3.91% C105 191.81 0.27% 

R101 618.33 0.20% C106 191.81 0.27% 

R102 578.44 5.73% C107 191.81 0.27% 

R103 479.86 5.56% C108 191.81 0.27% 

R104 461.74 10.7% C109 191.81 0.27% 

R105 531.80 0.25% C201 215.54 0.39% 

R106 498.96 7.21% C202 215.54 0.39% 

R107 446.67 5.27% C203 215.54 0.39% 

R108 430.96 8.47% C204 222.27 4.30% 

R109 442.63 0.30% C205 215.54 0.39% 

R110 451.35 1.63% C206 215.54 0.39% 

R111 448.13 4.51% C207 215.54 0.49% 

R112 411.90 4.81% C208 215.37 0.41% 

Total distance 19,239.00 Mean rel. Distance 3.39% 

*: Optimal solutions given in [10]. 



 

 

V. DISCUSSION AND CONCLUSION 

 

 A methodology for developing constructive heuristic 

algorithms for general routing problems has been 

introduced and tested on a well known problem as is the 

VRPTW. Algorithm’s performance is good since its 

results are close to optimal solutions and reach the 

optimum on several instances 

 Two main lines of applicability derive from our 

methodology. First, it can be employed to solve different 

routing problems that arise when analyzing logistic 

systems. Second, the analysis of the obtained solutions 

allows the relevant factors for instances’ resolution to be 

identified and thus the categorization of problems. Since 

the effect of problem’s characteristics on the solution can 

be measured, it becomes possible to use this knowledge 

for the improvement of other algorithms or in the 

development of new ones. 

 But the most interesting contribution of our 

methodology is that it provides a systematic way for 

studying new routing problems for which little knowledge 

on suitable heuristic rules is available. This way, human 

effort is reduced and focused exclusively on the model 

selection together with its appropriate input factors as 

well as on the analysis of results. 

 Thus, other routing problems as the VRP or the PDP 

can also be tackled by simply replacing the characteristic 

problem factors and verifying specific constraints It can 

also be employed for the solution of dynamic routing 

problems. The solution procedure would start with an a-

priori net’s parameters tuning followed by an on line 

routing of the nodes using the obtained net. 

 Finally, a suitable set of techniques for an exploratory 

solution analysis has been illustrated. They lead to an 

enhanced comprehension of the evolved model’s behavior 

resulting in a valuable learning from the solutions in order 

to define new algorithms. 
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