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Abstract. This paper addresses the problem of adaptive learning in non-stationary problems through neuroevolution. It 

is a general problem that is very relevant in many tasks, for example, in the context of robot model learning from 
interaction with the world. Traditional learning algorithms fail in this task as they have mostly been designed for learning a 
single model in a static setting. Neuroevolutionary techniques have obtained promising results in this non-stationary 
context but are still lacking in certain types of problems, especially those dealing with information streams where different 
portions correspond to different models. An extension through the introduction of the concept of introns and promoter 
genes enables neuroevolutionary algorithms to improve their performance on this type of problems. Following this 
approach, an implementation of these concepts on a genetic algorithm for neuroevolution is presented here. This algorithm 
is called Promoter Based Genetic Algorithm (PBGA) and it uses a genotypic representation with a set of features that 
allows for an intrinsic memory in the population that is self-regulated, in the sense that functional parts of the individuals 
are preserved through generations without an explicit knowledge about the number of different tasks or models that have to 
arise from the data stream. Some illustrative tests of the potential of these techniques based on the continuous switch 
between completely different objective functions that must be learnt are presented and the results are analyzed and 
compared to other neuroevolutionary algorithms. 
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1 Introduction 

In real-world robot learning, there are usually no direct targets that permit choosing the correct action for every situation, 
leading to processes whereby optimal behaviour must be learnt by exploring different actions and observing their results, 
thus, in a certain sense, by obtaining models of the interaction with the world. The domains in which these processes take 
place are usually continuous, partially observable, non-stationary and, in general, episodic. These four characteristics are 
what make it so difficult to provide good enough learning strategies for them. 

Continuity implies that well-established approaches like Reinforcement Learning are not scalable in large state spaces 
because of the infinite number of possible states that must be handled [1]. On the other hand, the fact that the domains are 
non-stationary means that, the robot state, the environment and the objective may change in time, thus, there is a lack of a 
fixed mapping between solution encoding and solution fitness, and this problem is usually compounded with partial 
observability. It is in this context where neuroevolution, that is, to evolve artificial neural networks (ANN) using some type 
of evolutionary algorithm, becomes a reference tool due to its robustness and adaptability to dynamic environments [2] and 
in some types of non-stationary tasks [3].  

However, it is also necessary to consider the episodic nature of the problem. The robot perceives episodes of sensorial 
information to be modelled as one model intermingled with episodes of sensorial information corresponding to other 
models. This implies that whatever perceptual streams the robot receives could contain information corresponding to 
different learning processes or models that are intermingled (periodically or not), that is, learning samples need not arise in 
an orderly and appropriate manner. Some of these sequences of samples are related to different sensorial or perceptual 
modalities and might not overlap in their information content; others correspond to the same modalities but should be 
assigned to different models.  

The problem that arises is how to learn all of these different models, the samples of which are perceived as partial 
sequences that appear randomly intermingled with those of the others. Most traditional learning algorithms fail in this task 
as they have mostly been designed for learning a single model from sets of data that correspond to that model and, at most, 
some noisy samples or outliers within the training set. This problem becomes even more interesting if we consider that it 
would be nice to be able to reuse some of the models, or at least parts of them, that have been successful in previous tasks 
in order to produce models for more complex tasks in an easier and more straightforward manner. 

In this work, we propose considering the concept of promoters and introns in neuroevolutionary algorithms. The 
concept of promoter is not new, but until now it has been applied very few times and only in terms of the ability to turn on 
or off any gene in a genotypic representation, no matter the meaning and the context of that gene. An example of this is the 
sGA [4][5][6] by Dasgupta or the promoters introduced in NEAT [7][8]. In this paper we go one step further and pair the 



concept of promoters with that of functional introns in terms of turning on or off functional units and not just any gene. 
The concept has been implemented in an algorithm called Promoter Based Genetic Algorithm (PBGA) that uses a 
genotypic representation with a set of features that allows for an intrinsic memory in the sense that functional parts of the 
ANNs are preserved in the individuals through the generations. With this representation a self-regulated evolutionary 
mechanism is obtained that stores previously learned information without explicit knowledge about the number or type of 
target functions or models. 

The rest of the paper is structured as follows: section 2 formally presents the domain of the problem. Section 3 
introduces the concepts of intron and promoter and how they are implemented in the PBGA.  Section 4 is devoted to the 
application results and to comparing this approach, as implemented in the PBGA, with other neurovolutionary algorithms 
in regards to this particular type of problem. Finally, section 5 presents some conclusions. 

2 Background 

Neuroevolution is the artificial evolution of neural networks through evolutionary algorithms and has shown to be a very 
powerful technique for learning in non-stationary problems [2][9]. Evolution has been applied to ANNs at three different 
levels: connection weights, architectures and learning rules. Typical approaches, where the architecture is fixed and 
evolution searches the space of connection weights, have been successfully applied in the last decade for solving very 
complex problems [10] but, recently, several articles [7][11] have argued that this approach limits the functionality of the 
ANN. As a consequence, several researchers have proposed different algorithms that evolve both the connection weights 
and the architecture of the ANN [2][7][11].  

Some of the most relevant neuroevolution methods presented in last few years are SANE [12], a cooperative 
coevolutionary algorithm that evolves a population of neurons instead of complete networks; ESP [10], similar to SANE 
but allocating a separate population for each of the units in the network, where each neuron can only be recombined with 
members of its own subpopulation; and NEAT [7], nowadays probably the most widely used neuroevolutionary algorithm, 
which can evolve networks of unbounded complexity from a minimal starting point and that is based on three fundamental 
principles: employing a principled method of crossover of different topologies, protecting structural innovation through 
speciation, and incrementally growing networks from a minimal structure [8].  

Initially, most of the work on testing and benchmarking evolutionary algorithms found in the literature was carried out 
on stationary problems through either linear or non-linear control benchmarks like the pole balancing problem. The last 
decade, however, has seen an increase in the application of evolutionary algorithms to non-stationary problems. Most of 
this work was focused on optimization problems and using typical benchmarks for non-stationary optimization such as 
Osmera’s dynamic problems [13] or the dynamic Knapsack problem [14].  

The application field of the work presented in this paper is not directly optimization but learning. As established by Yao 
in [2], “learning is different from optimization because we want the learned system to have best generalization, which is 
different from minimizing an error function on a training data set”. In particular, the objective is to consider learning in 
non-stationary problems.  

Thus, to formalize and frame the application domain of this work we will resort to the formalism in Trojanowsky´s 
work [3] for delimiting the scope of non-stationary optimization problems and extend it to learning problems in terms of 
the types of changes that may take place in the objective function. This way, real-world learning problems can be, in 
general, modelled by: 

 
M(P) = (D,F,C) 

 
Meaning that a model M of a problem P can be expressed by defining the variables of the problem and their domains (D), 
the objective function to be learned (F) and a set of constraints that must be satisfied (C).  

In a general non-stationary problem these 3 elements D, F and C, can change over time. The constraints of the 
problem C may vary in time because solutions that were acceptable in a given instant of time, become unacceptable. For 
a detailed reference in dynamic constraint optimization problems see [15]. On the other hand, D could change if the 
domains of the variables are modified or if the number of dimensions of the search space changes. Finally, changes in 
the objective function to be learnt may occur with time either because the function is intrinsically time dependent or, in 
the case of robotic systems, because the robot moves around or changes tasks and this implies a different F. 

In this paper, which initially considers the problem of robot learning in non-stationary problems, we will leave aside 
constraints and we will consider that the robot has an unchanging set of sensors and actuators (D does not change). 
Thus, we are trying to learn in real environments through models of robot-environment interaction and all that is clear is 
what sensor and what actuators the system has, but it is not clear for each task or learning process which of these are 
necessary or what is the real target to be learnt in each case. This implies dealing with changes in the objective function 
F, the most typical case in real-world learning in robotics, referenced in general as non-stationary problems. 



In this sense, there are different types of changes of F that may occur in time [3]: 
1. Random changes: where the next change in F does not depend on the previous one. This usually leads to the 

learning of different problems. It is the case where two streams of data corresponding to different models are 
intermingled and occurs when, for example, a robot is exploring an unknown dynamic environment. 

2. Non-random non predictable changes: the changes in F are not random but they are too complex to predict. This 
is another typical situation in robotics where the types of different environments and/or tasks are limited but the 
robot cannot predict the next one it will be faced with. 

3. Predictable changes: these are changes that may be predicted and they come in two flavours: cyclical and non 
cyclical. This situation is possible in real-world robotics, and would make life much easier, but it is not typical. 

 
Furthermore, the changes in the objective function can be continuous (adiabatic) or discrete. For the former case, several 

authors have analysed different high diversity evolutionary algorithms or local search techniques that are able to follow the 
adiabatic changes in the objective function [14][16]. In the latter, it is obvious that the larger the jump, the more difficult it 
will be to follow the evolution of the landscape through local search techniques. In general real-world situations in robotics 
no assumption can be made about the type of change and, as therefore, any algorithm or learning process in this domain 
must support both. 

Consequently, the problem domain that is being dealt with here is: learning in dynamic environments characterized by 
changes in the objective function F (non-stationary problems) that correspond to any of the categories in [3] or their 
combination (random, non random, predictable, unpredictable, continuous or discrete). The simplest case occurs when 
changes are predictable and continuous and the most difficult one when changes are random and discrete, but all of them 
are possible in real-world learning in robotics. 

The solutions proposed in the literature to deal with the application of evolutionary algorithms to non-stationary 
problems can be classified into two broad categories [14]: memory-based approaches and search-based approaches. In the 
first group, the algorithm includes some kind of memory structure that stores genotypic or phenotypic information that can 
be used in the future to improve the optimization process. This memory may be internal, included in the chromosomes and 
evolved [5][17], or external, storing successful individuals that are usually introduced in the population as seeds [18][19]. 
In the particular case of neuroevolutionary algorithms, an example of memory based approaches is the work by D’Silva 
[8], where the authors apply the real-time version of the NEAT algorithm and study how to increase the probability of 
obtaining populations that can remember old skills as they learn new ones while in a dynamic video game situation by 
considering an external memory that stores successful ANNs that are inserted as seeds in future generations. However, the 
main problem of external-memory based approaches to non-stationary problems is that they are limited to periodic or 
predictable or detectable changes as it is necessary to know when an individual must be stored in the memory. That is, it is 
necessary to identify the different functions the system is learning or, at least when they change, usually by analysing the 
evolution of the error [20]. This procedure is very noisy and hard to apply in complex problems. Consequently, memory-
based approaches perform better in periodic non-stationary problems [18], with predictable or easily detectable changes, 
where the individuals can be associated to a given objective function and stored in detected cases. For non-periodic non-
stationary problems, both in the case of random changes and non-random non predictable changes, where it is not easy to 
detect the changes in objective function, search-based algorithms have been proposed. The algorithms developed for these 
cases usually rely on an extreme ability to continuously search and thus adapt relatively fast to the new objective function. 
This is generally achieved by trying to maintain a high level of diversity in the population [14][16]. These techniques, 
notwithstanding the high level of diversity in the populations, unless these populations are extremely large, basically 
follow the objective function as it changes, but do not have any memory information so as to return fast to previous 
situations. As a consequence, these techniques function at their best in adiabatic problems where transitions are smooth and 
thus can be easily followed. 

Here we are interested in the ability to deal with both periodic and non-periodic non-stationary problems where changes 
of the objective function are not predictable or easily detectable. In addition, we are interested in environments where 
robots will operate, which imposes the need to remember to an extent previously encountered situations (models) and even 
reuse parts of them. Therefore, an intermediate approach based on internal memories and on maintaining diversity using a 
genotype-phenotype encoding that prevents the loss of relevant information through generations, unlike more destructive 
approaches such as [15] or [16], is necessary. To this end, there are several biologically inspired solutions in the literature 
that consist on tweaking with the representation of the individuals and their genotype-phenotype transformation through 
the selective expression of genes [17][21][22]. In this paper we will concentrate on the introduction of the concepts of 
functional introns and promoter genes within the genotypic representation of the chromosomes and we will show the 
potential of this type of approach by the integration of these mechanisms in a Genetic Algorithm called the Promoter Based 
Genetic Algorithm (PBGA). 

An initial approach to the introduction of promoter genes was implemented on the Structured Genetic Algorithm (sGA), 
developed by Dasgupta and McGregor [4] as a general hierarchical genetic algorithm. They applied a two level 
interdependent genetic algorithm for solving the knapsack problem and developing application specific neural networks 
[6]. A two layer sGA was used to represent the connectivity and weights of a feed-forward neural network. Higher level 



genes (connectivity) acted as a switch for sections of the lower level weight representation. Sections of the weight level, 
whose corresponding connectivity bits were set to one, were expressed in the phenotype. Those whose corresponding bits 
had the value of zero were retained, but were not expressed. The main difference between the sGA applied to 
neuroevolution and the PBGA is that the activation genes in sGA act at connection level while PBGA works with neuron 
units (neurons and their input connections), that is, functional units. This is a very relevant difference even though to 
enable/disable a neuron unit is much more disruptive, it permits preserving complex functional units and their 
relationships. 

3 Promoter Based Genetic Algorithm 

3.1 Biological background 

There exist two basic biologically based approaches to gene expression: diploid representations and promoter based 
mechanisms. Diploid genotypes are made up of a double chromosome structure where each strand contains information for 
the same functions. Whenever a phenotype is constructed from the genotype, one of the two possible alleles for each gene 
is chosen following a dominance mechanism which may change with time. As not all of the genes making up the 
chromosomes are expressed, and as the fitness of an individual is determined by its phenotype, the recessive genes are 
shielded from selective pressure thus providing a memory within the encoding of the genotype. These techniques were 
introduced in computational evolution by Goldberg [23], who claimed that a diploid representation combined with a 
dominance map could outperform a standard evolutionary algorithm in dynamic problems. In this work, however, we will 
concentrate on the other gene shielding/expression mechanism, that is, the use of gene promoters and, consequently, 
loosely speaking, of functional introns as unexpressed pieces of genetic code because it is a more intuitive representation to 
work with ANNs.  

In prokaryotes (bacteria and other simple cells) the entire DNA coding for a protein is continuous. In more complex, 
eukaryotic, cells, however, the encoding DNA is generally discontinuous: sequences of encoding DNA (exons) are 
interspersed with long sequences of non-encoding DNA. This non-encoding DNA sequences, usually about 10-fold longer 
than the exons, are called introns and even though for a long time they have been considered “junk”, the fact that they are 
so common and have been preserved during evolution leads many researchers to believe that they serve some function. 

To control where a protein is encoded, the chromosome contains protein begin and protein end signals called codons. 
When the machinery of the cells sees that first begin codon, it knows that the instructions for making a protein begin at this 
point. A stop codon tells the cell's machinery that it has reached the end of the protein and should stop translating the code.  

It must also be considered that almost every cell in an organism has a copy of every single gene the whole organism 
needs. Different genes are expressed in cells corresponding to different organs. Obviously, one would not want a gene 
coding for toes to be expressed in the lungs. Gene promoters are in charge of controlling these effects and they are 
important regulatory structures that control the initiation and level of transcription of a gene. They sit upstream of the gene 
and dictate whether, or to what extent, that gene is turned on or off. 

3.2 Genotype-Phenotype encoding 

At this point, we have provided an indication of the elements that should go into genotype encoding in order to allow for 
gene expression. These elements are exons and introns, gene promoters and codons. Using these elements, the “cell 
machinery”, that is, the part of the genetic algorithm (GA) in charge of constructing the phenotype, will know how to make 
the final organism from the genotype. If these elements are an intrinsic part of the encoding, they will provide for an 
unobtrusive way of evolving what is expressed and how and, thus, make the operation of the algorithm much smoother. 

To demonstrate the potential of this type of structures when applied to neuroevolution, we have considered a GA that 
evolves the weights of feedforward artificial neural networks (any other evolutionary algorithm with a similar type of 
encoding could have been chosen). These neural networks are encoded into sequences of genes for constructing a basic 
ANN unit. Each of these blocks is preceded by a gene promoter acting as an on/off switch that determines if that particular 
unit will be expressed or not. In order to simplify the algorithm, it was decided to make use of these gene promoters also as 
start and end codons due to the position they occupy in the chromosome. For example, using the simple feedforward ANN 
representation shown in Fig. 1, the following chromosome could represent an individual in a neuroevolutionary algorithm 
with no genotypic-phenotypic transformation: 
 

[W13 W23 W14 W24 W15 W25 W36 W46 W56] 
 

The genotypic representation used in the PBGA for the ANN phenotype shown in Fig. 1 is: 



 
[1 1 1 W13 W23 1 W14 W24 1 W15 W25 1 W36 W46 W56] 

 
where all the genes of value 1 are promoter genes. Thus, the first two genes represent that the two input neurons are 
enabled, the fifth gene represents that neuron 3 is enabled (controlling weights W13 W23), and so on. Continuing with the 
same example, Fig. 2 shows the phenotypic representation of the PBGA chromosome: 
 

[1 1 1 W13 W23 0 W14 W24 0 W15 W25 1 W36 W46 W56] 
 

where promoter genes of neurons 3 and 4 are disabled and consequently these two neurons and their inbound connections 
are not shown in the phenotype. 

As we can see, the basic unit in the PBGA is a neuron with all of its inbound connections as represented in Fig. 3. 
Consequently, the genotype of a basic unit is a set of real valued weights followed by the parameters of the neuron (in this 
case, a traditional sigmoid, but it could be any other) and proceeded by an integer valued field that determines the promoter 
gene value and, consequently, the expression of the unit. By concatenating units of this type we can construct the whole 
network. With this encoding we want to impose that the information that is not expressed is still carried by the genotype in 
evolution but it is shielded from direct selective pressure, maintaining this way the diversity in the population, which was a 
design premise as established in the previous section. Therefore, a clear difference is established between the search space 
and the solution space, permitting information learned and encoded into the genotypic representation to be preserved by 
disabling promoter genes. 

As a consequence, in order to maintain previously learnt information in the chromosomes when dealing with non-
stationary problems and taking into account that the information is in the structure of the ANN, the genetic operators must 
be tailored towards preserving these topological relationships. Although other approaches are possible, we have chosen to 
use the same topology for the genotypic representation of all the ANNs in the population to avoid complexities, like a 
continuous growth in the ANN size (which results in cpu intensive tasks) or the high number of parameters that are needed 
to control the combination of the different topologies, associated to other approaches where the topology is completely free 
like in NEAT [7]. This way, all the ANN genotypes have the same number of total neurons, in this case, within a two-layer 
feedforward representation. The designer simply imposes a maximum number of neurons per hidden layer, and all the 
ANNs are created with the same chromosome length. This does not mean that the ANNs resulting from the genotype-
phenotype transformation have the same topology, as this depends on what functional units are enabled by the promoters. 
The PBGA usually starts with minimal phenotypical ANNs (just one neuron enabled per hidden layer) and evolution 
makes different types of ANNs (in terms of enabled neurons) coevolve together. 

3.3 Crossover and mutation 

 
The main problem that had to be dealt with in the implementation of the algorithm is how to perform crossover and 
mutation without being extremely disruptive or generating a bias in the evolution of what genes are expressed. We must 
bear in mind that we are crossing over not only weight values, but the neurons that conform the topology of the network. 
Consequently, it is necessary to be careful about how disruptive crossover or mutation will be on the information units 
found in the genotype. If two parent chromosomes are taken at random, they will probably not have the same expressed 
neurons, and these are the ones that directly affect the fitness of the individual when implemented in the phenotype. Thus, 
we find two types of information in the parent genotypes that must be recombined in order to produce an offspring: genes 
corresponding to expressed neuron units, which are responsible for fitness, and genes for unexpressed neurons, about 
which we have little information. 

The crossover is panmitic in the PBGA, that is, one child chromosome is created from two parent chromosomes. This 
process implies crossing over whole neuron units. To be statistically neutral regarding the expression of the genes, 
crossover must be performed carefully taking into account the promoter genes that control the expression of the gene 
sequences. This crossover follows the following 3 rules: 

1. If both parent units are expressed, the offspring unit is expressed and the weights are obtained applying a 
simple BLX-α crossover to the neuron unit’s weights. 

2. If both parent units are not expressed, the offspring unit is not expressed and the weights are directly inherited 
from one of the parents (50% chance) 

3. When one unit is expressed and the other is not, there is a 50% chance of the offspring unit being expressed 
and the weights are inherited from the corresponding parent.  

Thus, on average, the number of expressed units are preserved and a bias in this term prevented. In addition, the strategy 
of preserving the disabled neuron units and performing  information crossover only in cases when both neurons are active, 
that is, where the crossover effect can be tested is followed. 



Regarding mutation, things are simpler, and the only consideration that needs to be made is that gene promoters must be 
mutated at a different rate from that of regular genes. Note that mutating gene promoters may be very disruptive as it 
affects in a very serious way the composition of the phenotype, whereas mutation of the rest of the genes is, on average, 
much more gradual on the resulting phenotype. Consequently, we decided to use different mutation rates on the gene 
promoters (structural mutation) and on the real valued genes (parametric mutation). The structural mutation operator 
simply inverts the activation value from 0 to 1 or from 1 to 0, and the parametric mutation operator applies a non linear 
cubed random mutation mechanism (f(x) = f(x) + rand(0,1)3 ) only to genes belonging to active neurons. As will be shown 
in the examples presented later, the values for these mutation probabilities are quite critical for the performance of the 
algorithm. 

3.4 Basic operation 

The PBGA is a genetic algorithm and follows the basic scheme of this type of algorithms, performing crossover and 
mutation over a selected pool of individuals that represent ANNs. The working cycle of the PBGA is very standard: 
 

1. Creation of a random population of N individuals using the representation commented above 
2. Fitness calculation over the whole population. 
3. Selection of 2N individuals using a tournament selection operator. 
4. Panmitic crossover with a probability Pc over the 2N population. The crossover operator is applied twice over the 

same parents and the offspring with highest fitness is selected. After crossover, an N individual offspring 
population is produced. 

5. Mutation with probabilities Psm, Ppm over the offspring population. 
6. Fitness calculation over the offspring population. 
7. Elitism that substitutes the worst individuals of the offspring population with the best individuals of the 

original population. 
8. Return to step 3 for n generations. 

 
The number of parameters that must be established by the user in the PBGA are 6: maximum number of neurons of 

the ANNs, population size, crossover probability, structural mutation probability, parametric mutation probability and 
the number of generations of evolution. All of them are problem-dependent but, as we will show in the next section, 
their values are intuitively easy to set up. 

4 Application 

To test the PBGA in the conditions used for its design and development, we take inspiration from the type of task that a 
real robot must perform when learning in a dynamic environment. Thus, we assume that a robot is executing a given task 
in an environment that changes due to several possible reasons, like a change in the ambient conditions or because the 
robot moves to another environment, and as a consequence, the model of the environment that the robot is learning, 
changes too. The objective of the experiments is to study effects of promoters over functional introns on the capability of 
dealing with changing objective functions (F in Trojanowsky´s terms [3]) as compared to other approaches. Consequently, 
in what follows we will concentrate on this, leaving aside other issues such as precision for which other types of functions 
and experiments should be chosen. 

To simulate this change of objective functions to be learnt, we have used two different 3D functions that the PBGA 
must learn, and that are cycled periodically and non-periodically:  
 

F1(x,y) = (x+y)/2   x,y ∈ [-10,10] 
F2(x,y) = sin(4x) + ysin(y)  x,y ∈ [-10,10] 

 
It can be seen that both functions are very different (the second one is much more complex than the first) in order to test 

the capability of the PBGA of preserving the learned information in completely new situations. 
To show the basic features of the PBGA as a consequence of its architecture, in a first experiment we used a given 

fitness function (F1) for 100 generations of evolution and a different one (F2) for the next 100 generations and kept cycling 
between them, simulating thus a periodic change of the environment. It is important to note that even though the change 
occurred periodically, this information is not known to the algorithm and what it is experimenting is an unpredictable 
change. The parameters used in this first experiment are shown in Table 1. We expect the PBGA to converge faster as the 
iterations (fitness function switch cycles) progress, because some of the previously learned information has a chance of 



remaining in the unexpressed part of the genotype. Fig. 4 displays the root mean squared error (RMSE) for the first 2000 
generations (20 cycles) of evolution (top graph) and 25000 generations (250 cycles) later (bottom graph). Function F1 is 
learnt with a lower error than function F2, as expected due to its simpler nature. The RMSE decreases during each 100 
generation cycle as expected for a typical error evolution. When a change of objective function occurs, there is an error 
peak that is larger in the cycle from F1 to F2 due to the higher complexity of the second function. This peak rapidly 
decreases as the networks adapt to the new function. In addition, it can be observed how the error level at the end of each 
100 generation cycle decreases in both functions along the cycles until it stabilizes. This result is clearer in Fig. 5 which 
displays the RMSE at the end of each cycle. The upper points correspond to the error level obtained for function F2 and the 
lower ones those for function F1. What is interesting in this figure is that the final error level decreases and stabilizes as in a 
typical evolutionary process, as if the changes of fitness or objective functions do not occur. 

Fig. 6 displays the same behaviour as Fig. 5 but from a different perspective: the number of generations required by 
the PBGA in order to achieve a given error value, for example, 1.5 RMSE for the F2 function when, as in the previous 
case, this function appeared interspersed with F1 every 100 generations. The x axis represents the number of cycles 
when the F2 function was learnt. It is clear from the graph that, except in the 8 initial cycles where the PBGA is not able 
to reach the desired error level of 1.5 RMSE in the 100 generations, there is a decreasing tendency in the error level 
(represented in the figure with a pointed grey logarithmic trend line). This is the main property of the PBGA and clearly 
indicates that the preservation of information in the unexpressed part of the genotype really leads to improvements in 
the speed of evolution towards a solution the system has seen totally or partially before. This is even made more evident 
if these results are compared to those obtained using a standard variable chromosome length genetic algorithm and that 
will be presented later. 

Obviously, if the cycles are very long, there comes a point where probabilistically the information that is being 
preserved in the unexpressed parts of the chromosome will tend to degrade and be lost, especially if the functions are 
complex and require a large number of neurons for their modelling. This is equivalent for the case of a non-periodical 
change in the fitness function: this capability of preserving the information learnt depends on the length of each cycle. It 
seems obvious that if the cycle is too short, the algorithm may not be capable of learning the function and, if the cycle is 
too long, the population could converge and the probability of losing the information stored in the inactive neurons would 
increase. For example, in Fig. 7 we have represented the evolution of the RMSE with the same periodical switch of fitness 
function between the original F1 and F2 functions every 100 generations until cycle 50 (generation 5000). At this point a 
non-periodical and non-predictable change in the environment is simulated by maintaining function F1 continuously during 
7 cycles (700 generations). At the end of this period (generation 5700), the previous periodic change every 100 generations 
starts again. As seen in Fig. 7, from generation 5000 to 5700 the error level is very low because the PBGA is learning only 
the simple function F1. In generation 5700, the PBGA must learn function F2 again and is able to reach, in this case, an 
error level of 1.564 RMSE in just 100 generations. It must be pointed out that this error level was achieved in the initial run 
for the first time in generation 1186, as shown in Fig. 7, which means that the PBGA required 6 cycles of function F2 to 
reach this level starting from an ANN population that had learnt function F1 from generation 0 to 100. This experiment 
clearly indicates that the PBGA is able to preserve information of a fitness function in the chromosomes after a period of 
learning a completely different function and, as a consequence, this allows it to reach low error levels earlier. On the other 
hand, even though 1.564 RMSE is achieved in just 100 generations when switching back to function F2 after 700 
generations, this is a little bit more error than the algorithm was obtaining for the  generation switches immediately before. 
This is a consequence of the fact that as more time is spent in a given objective function, more information stored in the 
genotype is lost. The parameters in this experiment are the same as for the previous one (Table 1). 

The way the PBGA is switching between learnt representations can be appreciated in Fig. 8, where we display de 
average number of neurons that make up the networks in the population (black line) and the number of neurons of the best 
individual (grey line) in each generation throughout the evolution presented in Fig. 4 bottom. There are clearly two average 
sizes. One of them corresponds to the minimum size achieved by the algorithm for the network to solve the problem 
indicated by function F1 which is around 18 neurons average, but with minimum peaks of 14 neurons. We must take into 
account that the minimum permitted number of neurons is 5 (2 inputs, 2 hidden layers and 1 output). The other size in Fig. 
4 corresponds to the minimum possible size for the harder function F2, which is around 22 neurons with peaks of 26. It is 
interesting to note how the PBGA switches neurons on and off when a transition between fitness functions occurs. Note 
that this number is the number of neurons active in the network, but it does not provide any indication of the distribution of 
neurons among layers. 

Some comments must be made about the parameters required to obtain these results which are shown in Table 1. As 
explained at the end of section 3, the PBGA has 6 parameters to be adjusted: number of generations of evolution, 
maximum number of neurons of the ANNs, population size, crossover probability, structural mutation probability and 
parametric mutation probability. The first 3 parameters must be adjusted as in any other evolutionary algorithm with a 
compromise between computational time and accuracy (higher number of neurons implies a larger population size). The 
crossover probability has been fixed to 70% in all the trials to obtain the typical genetic algorithm behaviour with a 
balance in the preservation of the best individuals. Finally, the structural mutation probability and the parametric 
mutation probability are very relevant and must be adjusted carefully to achieve accurate learning. At this point, we 



must say that the objective of the development of the PBGA is not to obtain a highly accurate evolutionary algorithm, 
because in learning processes this is not the main problem. Consequently, we have used the error level obtained in 
modelling functions F1 and F2 as a quality measure when cross-comparing, and not as an absolute measure of accuracy. 
Table 2 displays the RMSE obtained after 150 cycles for both functions F1 and F2 using different values for the 
structural and parametric mutation probabilities. For these functions, the ideal value of the parametric mutation 
parameter is lower than 1% but not zero, and for the structural mutation parameter the ideal value is around 2%. So, as a 
conclusion, it must be pointed out that structural mutation is very disruptive and it is not easy to adjust. Parametric 
mutation, on the other hand, must be assigned a low value. 

As mentioned before, the main features of the PBGA are clearer when we compare it with a generic variable 
chromosome length genetic algorithm (VCLGA) we have implemented, with no gene promoters, that uses a direct 
transformation between genotype and phenotype. The ANNs in this genetic algorithm were created with the same 
architecture as in the PBGA and the algorithm works as a standard GA where the genes represent the connection 
weights and neuron parameters, and where the mutation operator creates or deletes hidden neurons and their 
corresponding connections. In fact, when hidden units are created, random values are assigned in the weights and 
parameters. 

Fig. 9 displays the results obtained for the two algorithms in the first cycle and after a few thousand fitness function 
switches. In this case, and to make the problem simpler for the VCLGA we switched between two fitness functions 
corresponding to neural networks that modelled the sum of the inputs and networks that modelled the product of the 
inputs (the parameters used in the PBGA in this example are shown in Table 3). On the left hand side of the figure we 
have graphs corresponding to switching between the two fitness functions every 20 generations and on right hand side 
the switch is performed every 100 generations. The top graphs correspond to the evolution in the first function switch, 
the bottom ones to the evolution after many function switches (the x axis displays the number of generations that have 
been run). The dashed line in each graph indicates the PBGA and the solid line the VCLGA. All the data have been 
normalized to the best solution (whose error we indicate by 1). Several things can be seen in this figure. First, in the first 
cycle, both GAs perform similarly, especially at the beginning. After many cycles, it can be observed that the PBGA 
obtains much better results. This is especially noticeable in the case where only 20 generations of evolution are carried 
out between fitness function switches. As the chromosomes do not have time to converge, the genotype preserves the 
necessary information and the PBGA obtains the best result after two generations of evolution, whereas the VCLGA 
needs basically the same number of generations as in the first cycle. In the case where we run 100 generations before 
switching, the result is very similar, but now, as the phenotype population has more time to converge, it takes the PBGA 
a little longer to achieve the best results. Despite this longer time, it is still a lot faster than the standard GA and the final 
error obtained is almost halved. 

Obviously, any comparison would not be complete if one of the current successful neuroevolutionary algorithms 
were not considered and the one that seemed more appropriate was the NEAT algorithm [7] for two reasons: it has been 
demonstrated to be very successful in certain types of dynamic tasks and it does implement a version of promoters, 
although they are applied to individual genes as in the case of the sGA and not to functional units. In order to perform 
the comparisons with respect to changes in objective functions the latest version of the standard NEAT [24] was 
employed. We have not employed rtNEAT because it uses an external explicit memory, so it represents an alternative 
method that, in fact, is also compatible with PBGA [20]. The parameters considered for NEAT were those of the 
p2nv.ne file included in the source code and used for a non-Markovian (no-velocity) pole balancing problem in the 
authors' work [7], with three exceptions: 
• The population was raised to 2000 individuals to make it equal to that of the PBGA experiments. 
• Consequently, compat_thresh was raised to 8.0. 
• recur_only_prob was set to 0.0 because recursion is not necessary here. 
The ANNs were initially minimal with two inputs, a bias neuron and one output. NEAT's behaviour may change 

considerably depending on the parameter's values, thus, tuning may be required for particular fitness functions. But, as 
Fig.10 shows, this fine tuning is not very relevant in our problem, as NEAT is not able to preserve genetic information 
over fitness function changes. This figure represents the evolution of the RMSE for the first 1200 generations cycling the 
fitness function between the previously defined F1 and F2 functions every 100 generations. The solid black line 
corresponds to the NEAT algorithm and the dashed grey line to the PBGA (it is the same data shown in Fig. 4 top). The 
results for NEAT are qualitatively comparable to those of the VCLGA. The RMSE level does not improve between F1 or 
F2 cycles and the fitness function seems to be relearned from scratch each cycle. 

It is necessary to point out that NEAT was not designed for non-stationary problems and there are many reasons 
because it is not suitable for that: 

• Elitism is not always applied. It has elitism inside a given species only if there are more than 5 individuals. If 
the species owning the best global individual has fewer than 6 individuals the individual will probably be lost. 

• Species are heavily punished if their fitness doesn't improve in dropoff_age generations, making them 
disappear, but this is precisely what happens when we switch to a more difficult fitness function. 



• Most of the species are purged if the global optimum does not improve in dropoff_age + 5 generations, which, 
again, will happen when we switch to a more difficult fitness function. 

To give NEAT a chance, in a second test, dropoff_age was raised to such a high number (100000) that, in fact, it was 
deactivated and permanent elitism was established by eliminating the restriction of having more than 5 individuals in a 
given species for it to take place. The results can be appreciated in Fig.11. This figure depicts the evolution of the 
RMSE for the PBGA (grey dotted line) and the modified version of NEAT (black solid line) when cycling the fitness 
function between F1 and F2 every 100 generations. Things are a bit better for NEAT with these changes than in the 
previous case, and, sometimes, genetic information is preserved through fitness function changes, but it is still not the 
general rule. This is due to the fact that, unlike in the case of the PBGA, that to deactivate / activate functional blocks of 
an ANN is a very slow process (the algorithm deactivates / activates one connection at a time), and thus, the feature 
introduced does not generally imply an advantage over evolving again from the scratch when a fitness function change 
happens. It is obvious from the figure that the behaviour of the PBGA is much more stable and the preservation of 
genetic information is clear.  

5 Conclusions 

From the results obtained it is evident that allowing the genotypic representation of the organism to carry more 
information than is necessarily expressed in the phenotype results in a great advantage in terms of preserving genotypic 
diversity in the population even when the phenotypes have converged to a solution. When this occurs, the expressed 
parts of the genotypes tend to become very similar, thus increasing the frequency of the genes that help to achieve the 
solution within the population. When the fitness function changes, the genetic algorithm will be able to keep on 
working appropriately by drawing from the diversity present in the unexpressed parts of the genotype in order to modify 
the phenotypes and follow the new fitness function. This has been demonstrated to be more advantageous when this 
information is preserved in the form of functional units and not just any gene. 

What is very relevant now is that a sort of genetic memory is created within the genotype due to the high probability 
of those useful functional units that were successful in previous generations, and consequently appeared more 
frequently in the population, to become a part of the unexpressed parts of the genotype. The immediate result of this 
memory is that when a fitness function that has been seen before (or which requires combinations of basic units that 
were used in previous successful runs) is contemplated again, the GA achieves the desired phenotype much faster than 
before. Not only is the PBGA able to reuse previously learnt components (neurons with their connections) to solve 
previously observed problems, but it is also able to do that without any explicit indication about how many different 
problems / situations will happen or how long they will occur, that is, it is not necessary to detect a change in the 
problem (a change in the fitness function from the evolutionary point of view). 

Another advantage of this type of encoding is that phenotypes can grow or decrease in size depending on the 
processing required for each fitness function. The appropriate number of neurons will be selected in order to achieve the 
desired goal. This provides a very simple mechanism for obtaining variable size neural networks on one hand and as a 
consequence, it allows the GA to select the necessary inputs to perform the function it needs to carry out without having 
to compensate for redundant or unnecessary information. This is a very important point as it is much more difficult for a 
neural net to compensate for an input than to simply turn off that input neuron, which is basically what this type of 
evolution allows.  

Summarizing, this mechanism provides for a clear separation between the search and solution space, that is, 
genotypic and phenotypic spaces, and consequently lack of diversity in the latter does not imply this lack in the former. 
It also permits a preservation of functionality while allowing a continuation of search, something that is very difficult 
when using traditional GAs evolving variable length ANNs. In the traditional case, any neuron pruning or neuron 
addition is a very dramatic change which usually leads to undesired results. 
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FIGURE CAPTIONS 
 
Fig. 1. Genotypic representation of an ANN with 2 inputs neurons, one hidden layer with 3 neurons maximum and one 
output neuron corresponding to a PBGA chromosome: [1 1 1 W13 W23 1 W14 W24 1 W15 W25 1 W36 W46 W56] 
 
Fig. 2. Phenotypic representation of an ANN with 2 inputs neurons, one hidden layer with 3 neurons maximum and one 
output neuron corresponding to a PBGA chromosome: [1 1 1 W13 W23 0 W14 W24 0 W15 W25 1 W36 W46 W56] 
 
Fig. 3. Basic unit in the PBGA genotypic representation: a neuron with all of its inbound connections 
 
Fig. 4. Evolution of the RMSE for the first 2000 generations (top graph) and 25000 generations later (bottom graph), 
obtained using the PBGA cycling between functions to be learned F1 and F2 every 100 generations. 
 
Fig. 5. RMSE at the end of  each 100 generation cycle obtained using the PBGA cycling between functions to be learned 
F1 (lower points) and F2 (upper points). 
 
Fig. 6. Number of generations required by the PBGA to achieve an RMSE error value of 1.5 for function F2 when this 
function appeared interspersed with F1 every 100 generations. The grey dashed line represents a logarithmic trend line 
of the points. 
 
Fig. 7. Evolution of the RMSE with a periodical change of fitness function between F1 and F2 every 100 generations until 
cycle 50 (generation 5000) where function F1 is maintained continuously for 7 cycles (700 generations). At the end of this 
period (generation 5700), the previous periodical change every 100 generations starts again. 
 
Fig. 8. Average number of active neurons in the population (black line) and number of active neurons of the best 
individual (grey line) through the generations obtained using the PBGA cycling between functions to be learned F1 and F2 
every 100 generations. 
 
Fig. 9: Evolution of the relative error using the PBGA (solid line) and the VLCGA (pointed line). On the left hand side 
we have graphs corresponding to switching between two different fitness functions every 20 generations and on the 
right hand side the switch is performed every 100 generations.  The top graphs correspond to the initial generations and 
the bottom ones to the evolution after many cycles. 
 
Fig. 10. Evolution of the RMSE using the original NEAT (black solid line) and the PBGA (grey dotted line) cycling 
between functions to be learned F1 and F2 every 100 generations. 
 
Fig. 11. Evolution of the RMSE using the adapted NEAT (black solid line) and the PBGA (grey dotted line) cycling 
between functions to be learned F1 and F2 every 100 generations. 
 
Table 1. Parameters used in the PBGA for the results shown in all figures except in Fig. 9  
 
Table 2. RMSE obtained after 150 cycles for both functions F1 and F2 using different values for the structural and 
parametric mutation probabilities. 
 
Table 3. Parameters used in the PBGA for the results shown in Fig. 9  
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 Parameter value 

Generations  30000 
Population size 2000 
Maximum number of neurons in hidden layers 15 
Crossover probability  70% 
Structural mutation probability 2% 
Parametric mutation probability 1% 

Table 1 
 



 
 

Probability values RMSE after 150 cycles 
Structural mutation Parametric mutation F1 F2 

2% 1% 0.051719 0.005134 
0.5% 1% 0.065835 0.004277 
10% 1% 0.122638 0.013085 
2% 0% 0.133644 0.012396 
2% 0.5% 0.048061 0.004425 
2% 10% 0.149349 0.028701 

Table 2 



 
 Parameter value 

(left figures) 
Parameter value 

(right figures) 
Generations  30000 60000 
Population size 600 600 
Maximum number of neurons in hidden layers 6 6 
Crossover probability  70% 70% 
Structural mutation probability 2% 2% 
Parametric mutation probability 1% 1% 

Table 3 
 
 


