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Abstract 
 

This paper is concerned with the presentation of an on-
line cognitive mechanism for autonomous agents. The 
purpose of the mechanism is to allow autonomous 
agents, whether virtual or physical, to adapt to their 
environment and objectives without any external 
training. This is achieved through the use of their 
interaction with their surroundings in order to improve 
the level of satisfaction obtained. The mechanism is 
based on Darwinist principles and involves a two level 
concurrent operation of evolutionary processes. The 
first, or unconscious level, consists of evolutionary 
processes over models of the environment that are 
evaluated according to how good they are at predicting 
the next perceptions. This leads to a current, or 
conscious model, which is employed for evaluating 
strategies, using as fitness the level of satisfaction of 
the motivations of the artificial organism. Once a 
strategy is selected as the current one, it is carried out 
by means of the effectors that act on the real 
environment, returning a fitness measure for the 
evolution of the models. This cycle is repeated and, as 
time progresses, the models and strategies the 
organism works with become better adapted to the 
fulfillment of its motivations. This type of mechanism 
presents several advantages over other structures, such 
as its capability of obtaining original solutions and, at 
the same time, its capacity to make use of previous 
experience. In addition, if the environment changes, 
the mechanism will adapt efficiently. 

 
 
1. Introduction 
 
The work in the field of Artificial Life has concentrated on 
the search for simple artificial organisms that are capable of 
adapting to a changing environment with which they interact 
and where they must survive.  

 This search has been carried out from two points of view. 
On one hand, some researchers have contemplated the 
emergence of intelligent behavior as the result of the 
evolution of communities of simple organisms immersed in 
environments with different degrees of complexity to which 
they must adapt and where they must survive (Bourgine & 
Varela, 1991). This is the approach followed by evolutionary 
robotics (Harvey et al., 1993), when considering the behavior-
based alternative (Arkin, 1998), where there is no explicit 
model of the environment the organism lives in. 
 From another point of view, perhaps closer to the 
traditional methods of function implementation, a procedure 
for the design of an artificial nervous system that controls the 
behavior of the organism - an insect in the case of Beer (Beer, 
1990) - is sought. The design of nervous systems, although 
conceptually closer to the way in which humans have 
traditionally done things, presents the drawback that, in many 
cases, we are predetermining how the being must work, 
especially in the aspects of use of experience when facing 
new circumstances and in the generation of original solutions. 
 The problem could be formulated in the following terms: 
How can we provide our organisms with an underlying 
cognitive mechanism which does not predetermine their 
behavior or learning and which allows them to find creative 
and original solutions in an autonomous way? 
 Our approach to solving this question has been to provide 
an artificial organism with a darwinist cognitive mechanism 
that allows it to acquire in its life time a model of the 
environment or environments in which it lives and of the 
consequences of its actions over its internal state. This model 
is obtained and continuously updated through an evolutionary 
process.  
 There are few examples in the behavior based robotics 
approach and, in particular, in the evolutionary robotics 
literature, where explicit models of the environment the robot 
operates on are used. Watson (Watson, 1994) presents a 
system that, starting from some pre-trained building blocks 
and behavior sequences, when released into a real time 
environment adds its experiences to memory, building new 
behavior sequences, rules and procedures and deleting unused 



ones through a genetic algorithm. Nordin et al. (Nordin et al., 
1998) employ a memory based genetic programming 
mechanism in order to obtain a cognitive architecture for a 
Khepera robot that makes use of previous experience in its 
interaction with the world. Basically, a planning process can 
incorporate a GP system that is used to evolve a suitable plan 
for the optimization of the outcome given the best current 
world model. In (Steels, 1995), the author introduces a 
selectionist mechanism, he calls selectron, for the evolution of 
new behavioral competencies of robotic agents. This 
mechanism may be used on-line and on a real robot as it 
operates on a changing environment. 
 These types of mechanisms do impose a certain 
subdivision of tasks in Minski´s sense, that is, a model of the 
world is constructed and it is used in order to test possible 
strategies before actually using them in the real world. Our 
work is directed in this line. It uses world models as an 
intrinsic part of the cognitive mechanism. Its advantage over 
traditional systems is that we provide a way of not 
predetermining the world models, these are evolved on line as 
the agent interacts with its environment. The inspiration of 
this mechanism comes from several proposals made by 
different authors on Darwinist models for the operation of the 
brain. 
 
2. Evolutionary Learning Theories 
 
It seems that we are always stringing ideas or representations, 
and when we reason we usually do it in the form of sequences 
with an origin and an objective. This sequentiality is also 
reflected in human language, whose rules are implicitly serial. 
On the other hand, when we think, according to Calvin 
(Calvin, 1987a), we project series of actions onto known 
scenarios. Each action of the series is put through our 
analyzer of effects on the environment, and as a function of 
the result it returns we seek the effect of the next action on the 
string. This process continues until we find a sequence that 
leads to the desired objective. 
 From another point of view, we have to consider that at 
the biological level the brain is made up of millions of neural 
circuits working in parallel. The problem resides in how do 
we go from one operating mode to the other, that is, from a 
massive parallelism to a conscious sequentiality, or, at last, a 
very limited parallelism, which allows us to interact with our 
environment in an orderly fashion, and how can we use this 
step in order to obtain computational power in real time that is 
as impressive as that of human or animal brains. 
 One set of theories that have practically been ignored by 
the artificial intelligence community are those based on 
evolutionary concepts at different time scales. According to 
these theories, neural learning and brain development 
processes strongly depend on an evolutionary base, with 
mechanisms such as selection and mutation. This Brain 
Darwinism (Calvin, 1987b) plays the same role in the brain in 
somatic time as in ecosystems in phylogenetic time. 

 There are many historical references that postulate more 
or less clear proposals in this line. Statements by James “To 
think is to perform selections” (James, 1909) or Spencer “If 
the doctrine of evolution is true, the inevitable implication is 
that the Mind can be understood by observing how Mind is 
evolved” (Spencer, 1986) already pointed in this direction. 
 Within the field of cognitive science there are four basic 
theories that relate the brain or neural structure with its 
operation from a darwinist, or evolution in somatic time, point 
of view. These theories are: the Theory of Evolutionary 
Learning Circuits (TELC) (Conrad, 1974, 1976); the Theory 
of Selective Stabilization of Synapses (TSSS) (Changeux et 
al., 1973) (Changeux & Danchin, 1976); the Theory of 
Selective Stabilization of Pre-Representations (TSSP) 
(Changeux et al., 1984), and the Theory of Neuronal Group 
Selection (TNGS) or “Neural Darwinism” (Edelman, 1987). 
For an excellent review see (Weiss, 1994). Most of the work 
presented here has been inspired on these insights. 
 In addition to the underlying brain mechanisms, when 
trying manage the operation of an organism we must consider 
the problem of motivation. For any organism to adapt to an 
environment or perform any form of activity, it needs some 
type of motivation that allows it to establish its objectives, 
provides it with a reason to spend energy and establishes 
some order in its representation of the environment. 
 One of the most interesting paths for the study of 
motivation presents the set of possible behavioral alternatives 
as competing for or time-sharing the attention of the organism 
depending on the levels of drive associated to each one of 
them (Heiligenberg, 1974). A priority scheme exists whereby 
some types of stimuli (pain, for example) are prioritary over 
other types. In addition, the behavioral priorities can be 
adjusted so that the urgencies of the needs of the organism are 
balanced with respect to the opportunities of the environment 
and their quality (Gould & Marler, 1984). 
 Until recently, the motivations most computational 
systems had in order to carry out the tasks they where 
assigned where external motivations. A programmer 
established what motivated the action of the system in a direct 
manner, as in traditional programming where the motivation 
is implicit in the writing of the program, or in an indirect 
manner by means of a fitness function, as in the case of 
genetic algorithms. These externally set objectives imply a 
clear rigidity when trying to achieve adaptability, leading to 
stereotyped behaviors and standard solutions to the problems. 
This is assuming that the external fitness function could take 
into account the inherent variability of dynamic environments. 
What these types of solutions certainly do not provide is a 
complete autonomy of the organism. 
 We believe that for an organism to be autonomous and 
survive in changing environments it must contain its 
motivations within itself. In the case of animals, natural 
evolution and selection has eliminated those strains of the 
evolutionary tree whose members did not contain the 
necessary motivations in order to adapt to the environments 



and circumstances that arose, leaving only those that did 
contain these internal motivations. 
 The basic motivations are translated into drives for 
performing certain actions or behavioral patterns. These 
drives activate certain “programs”, which may be genetically 
encoded or learnt and which direct the actions of the 
individual, this is, they focus its attention on those aspects of 
the environment or actions that are relevant for completing 
the programs associated with the drive, and which will lead to 
placating its motivation. Different drives may conflict in an 
organism in a given moment of time, and for it to be able to 
operate there must be a mechanism for solving these conflicts. 
 Having given a small review of the theories and concepts 
that inspired our proposal and stated the purpose of the 
model, that is, to provide our artificial organisms with an 
underlying cognitive mechanism which does not predetermine 
their behavior or learning and which allows them to find 
creative and original solutions in an autonomous way, in the 
next sections we are going to describe the basic blocks of our 
model and the way they interact. In section 3 we provide the 
basic definitions on which our model is based. Sections 4 and 
5 are devoted to describing its structure, the different 
components of the model as well as their interactions. In 
section 6, we present examples of use of the cognitive 
architecture in a simulated artificial organism. Finally, we 
provide some conclusions. 
  
3. Basic Definitions and Structure 
 
Our interpretation of an organism internal cognitive operation 
and its external behavior is going to be based on two basic 
concepts: Models and Strategies. 
 
DEFINITION 1. Model: Abstraction that using the sensory 
inputs in time t, the strategy applied in time t and the state of 
the system in time t, permits determining the sensory inputs in 
time t+1 (whenever predictable) and the state of the system in 
time t+1. 
 
DEFINITION 2. Strategy: Set of motor commands that imply 
actions of the organism in the environment in a given 
sequence. 
 
 If what we want is an organism whose actions are not 
simple one to one reactions to its inputs, it is necessary to 
establish some mechanism that allows it to plan its actions. To 
plan implies to be able to predict the consequences of some 
facts or actions occurring in time t on the perceptions in time 
t+1 (or t+n in general). To predict unavoidably leads to the 
implicit or explicit existence of a model corresponding to that 
about which we want to predict. In the case of our organism, 
it needs to make predictions about its environment and itself. 
 In order to be able to operate, an organism requires at 
least two types of models: 
 

1- Model of the environment: which allows it to know what it 
is going to perceive in time t+1 from its actions in time t and 
the environment in time t. That is, this model permits 
evaluating the consequences of strategies on the environment 
and obtains answers to internal questions of the type, what 
would happen if...? It leads to the possibility of establishing 
strategies consisting of sequences of several actions. In 
addition, this model will make it possible for the organism to 
predict the probable evolution of the dynamic environment in 
which it operates in order to take advantage of it whenever 
possible. 
 
2- Model of itself: from its state in time t, the sensory input in 
time t and the strategy it applies, it allows the organism to 
evaluate its own state in time t+1. This model of itself 
provides a means for the organism to establish the probability 
of satisfying its internal motivations and a prediction of the 
extent to which they will be satisfied. 
 
 In any interaction with the environment, the organism 
perceives a series of stimuli through its sensors, which 
determine the model of the environment it uses to predict as a 
function of its motivations. At the same time, it must be able 
to observe the consequences of its actions on itself and how 
close it comes to satisfying its motivations. This is achieved 
by means of its model of itself. Finally, it needs to be able to 
generate actions in order to satisfy these motivations. This is 
achieved by means of effectors, driven by the strategies, 
which are series of actions the organism will generate. 
 Thus, as shown in figure 1, the cognitive mechanism of 
our organism is going to contain three types of mental 
representations in two different levels. On one hand it is going 
to contain a representation of possible strategies, on the other 
a set of models of the environment and itself and finally, a 
representation of its motivations. 
 The problem resides in how to combine strategies, 
models, sensors, effectors, motivations and environment in 
order to generate a closed set which allows the organism to 
survive. This combination implies a model of interaction 
among all of these elements which permits fluid real time 

Figure 1: Block diagram of the cognitive mechanism 



operation and which at the same time verifies the 
requirements we have stated, that is, possibility of learning, 
creation of original solutions, etc... 
 Making use of the bio-psychological theories we have 
commented in section 2, we are going to establish a two level 
hierarchy. The first level consists of sets of unconscious 
parallel processes that, after a brief processing stage, lead to a 
second “conscious” level by selection. In the following 
sections we analyze the different components of the model 
and their interactions. 
 
4. Components of the Cognitive 
Mechanism 
 
The organism perceives the environment by means of its 
sensors and acts on it through its effectors. In principle, the 
models, strategies and motivations are isolated from a direct 
interaction with the environment. The models receive 
information from the environment by means of the sensors 
and the strategies produce actions on the environment by 
means of effectors. 
 It seems evident that the internal image any organism has 
of its environment must be given as a function of the sensors 
it is endowed with. Also, its image of itself, that is, its state is 
going to be determined by its state sensors. If the organism is 
very simple and as single internal sensor it has a binary 
HUNGER (yes/no) sensor, as single external sensor it has a 
FOOD AHEAD (yes/no) sensor and as effectors it has a 
WALK FORWARD and a TURN LEFT effectors, its 
representation of the world will be given as a function of 
these four terms, it will not appreciate colors, or smells. 
Taking the analogy to an extreme, its concept of beauty could 
perhaps be FOOD AHEAD YES, and its concept of 
happiness could be something like HUNGER NO. 
 Taking this into account, the models of the environment 
our organism generates will only contemplate the information 
it has about it, that is, the information provided by its sensors 
and in the format (level of integration and pre-processing) in 
which they provide it. On the other hand, the strategies are 
going to be constrained to the actions the organism can 
perform on the environment. These two points are very 
important as they clearly show that an organism is limited by 
its sensors and effectors. These are going to determine to a 
large extent the organism, especially its ability to adapt to the 
environment, and the way it represents and processes 
information.  
 The question now is how we relate models, strategies and 
motivations. A model must allow us to try the effects of 
possible strategies on the environment, on the organism and 
on its motivations without actually carrying them out (one 
way of thinking). In this sense, the strategies must be “tested” 
in the models and the models must be capable of predicting 
their effect on the environment, on the organism and on its 
motivations. 

 The case is that simply testing strategies or models is not 
really very useful. An organism must be able to generate 
different strategies and as a function of its motivations select 
the best possible one in order to achieve its objectives. This 
testing of strategies, depending on their length (how many 
steps into the future they consider) may make intensive use of 
the models. These must take data in time t, and possible 
strategies in order to generate environments in time t+1, 
which will be used as inputs for the generation of 
environments in time t+2 with the next step of the strategy, 
and so on...  
 Following the ideas of the models presented in section 2, 
we are going to employ a darwinist strategy in order to endow 
our organism with the necessary cognitive mechanisms for it 
to benefit from a massively parallel processing model and, at 
the same time, maintain a conscious sequentiality in its 
interactions. 
 The prototype of darwinist strategy in computation are 
genetic algorithms and evolutionary techniques (Holland, 
1975). These methods are based on the generation of a 
number of representations or encodings of possible solutions 
to a problem (random at the beginning). These are evaluated 
using a fitness function that arranges them according to their 
fitness for solving the problem. Out of this set of solutions, 
the parents of the next generation are selected from the most 
fit and they mate, that is, they generate offspring by means of 
some type of combination of the genotype of the parents. 
These offspring undergo some random mutations and the 
process is repeated until an optimum solution is achieved. 
  When defining a GA we must be capable of evaluating 
that which we are going to evolve, and we must define a time 
scale or speed at which we want it to evolve. In our case, the 
two elements of the mechanism that must undergo an 
evolutionary process are the strategies and the models. 
 The treatment given to these two elements is going to be 
different. On one hand, as we have already pointed out, a 
model is evaluated by how good it was in predicting the 
inputs in t+1. This can be easily carried out by establishing 
some type of error function that relates predicted and real 
inputs for a given environment model and the predicted and 
real state in the case of the state, as we mentioned in previous 
section. This function can be the difference between them 
weighted by their relevance. That is, in the case of the models, 
the interaction with the environment, through the sensory 
inputs, will evaluate the set (population) of models in the 
organism. The fitness of a model is calculated by determining 
how good it was at predicting the inputs the agent has just 
obtained from the information it had before they were 
obtained. Between interactions with the environment we carry 
out some GA generational steps (selection, procreation and 
mutation) as a function of the evaluation, that is, using as a 
target the previous inputs. In each moment of the interaction 
we will select the model with the highest fitness value as the 
current model. Observe that by using this mechanism there is 
a massively parallel processing of many combinations of 



models and a selection process that leads to the current model, 
that is, to the model the organism is conscious of and which it 
uses for the evaluation of strategies, as indicated in figure 1. 
 In the case of strategies, the mechanism is similar, but 
now the strategies are evaluated using the current model and 
the fitness criterion is the predicted satisfaction of the 
motivational index. This index will be some type of 
combination of the elements of the motivation vector. 
Consequently, the fitness of a strategy is the resulting 
predicted satisfaction of motivations after applying the 
strategy, previous state and previous sensorial inputs to the 
current model. The set of strategies (the population) will 
undergo some GA generational steps and the strategy 
providing the greatest satisfaction will be the one selected for 
its execution. Its commands will be sent to the effectors. 
 Summarizing, the models are evaluated by the 
environment through the sensory inputs and the strategies by 
the current model through the predicted satisfaction of the 
motivations. This basic cycle will be repeated indefinitely and 
establishes the process for performing a parallel processing 
scheme leading to sequential solutions with very few 
constraints regarding the type of solutions that may result. It 
also provides the opportunity for generating new 
unprogrammed solutions and the capacity for predicting and 
planning. 
 If we consider the possibility of storing solutions that 
have worked satisfactorily, both in the case of strategies and 
models, and use them in new GA processes as seeds in the 
populations, we establish a mechanism that permits 
combining old solutions (seeds) with new elements (mutation 
and randomly generated solutions) so that original solutions 
and experience based solutions can be obtained without the 
problems or circumstances having to be identical. A 
combination of solutions is simply selected if the model says 
that its quality is going to be the best, independently of the 
problem. If the storage space is limited, there will have to be 
some type of forgetting mechanism, but that is the topic of 
another paper. 
  
5. Notes on Implementation 
  
Once the general operation of the cognitive mechanism has 
been presented, it is necessary to comment the base for the 
models, strategies and motivations. In the cognition and 
learning theories we have considered, the authors talk about 
selection of neural circuits, both during the formation of the 
brain and during learning and the selection of outputs in the 

adult brain. Continuing with the analogy, the “chromosomes” 

of the GA models can well correspond to artificial neural 
networks. Anyway, and despite the fact that biologically this 
is the most plausible representation, and perhaps from some 
computational points of view something very appropriate, 
especially because of their local learning capabilities, in 
principle there is nothing against them being any other type of 
information structure. The only requirement is that whatever 
the structure, it must be able to take some inputs and produce 
some outputs. Consequently, they could well be, in some 
cases, functions or production systems. In fact, there is no 
reason, except for complexity, why they cannot be different 
formats at the same time. In the examples presented we have 
made use of rule systems and neural networks for the models.  
 With respect to the strategies, they are sequences of 
commands to the effectors. Therefore they can be simple 
command lists interpreted by the effectors (which is the case 
here), or any other type of structure, with perhaps the only 
requirement that they must be chainable so that new strategies 
can be formed from parts of older ones. 
 In the case of motivations, they may be taken as one 
more sensor, which perceives a value as a function of hunger, 
thirst, pain (it can be structured as a pain matrix specifying 
different areas of the body) or whatever we want to include. 
These motivations are like containers which when the level is 
below a certain threshold implicitly or explicitly send 
messages of alarm that become stronger as the containers 
become emptier. These container levels can be simple 
numerical values sent to the internal models or to previous 
processing units which combine, select or relate them in some 
way to the drive they induce, that is, to their relevance in the 
fitness functions. 
 
6. Application Examples   
 
In this section we are going to present a simple illustrative 
application of the cognitive mechanism discussed in previous 
sections. From this point on we will talk about world models, 
including in this description both the models of the 
environment and the internal models. A world model is a 
function that takes as inputs the environment as perceived by 
the agent, its internal state and the action taken in instant t and 
produces as outputs the predicted perception and internal state 
in t+1 as described above.  
 We will use two different approaches to develop our 
example. In the first one, the world models will be encoded as 
simple rule lists, direct representations of the real world. In 
the second case, the models will be implemented as neural 

networks whose weights will undergo the evolutionary 

Figure 2: Binary encoding of the rules used in the model of world. The external perception has 4 possible values (00, 01, 10, 11) as a 
function of the height sensor. The internal perception is just the position of the three legs (up or down, 1 or 0) and the strategy in this 
case is a simple action (movement of the legs) so each bit is the position of each leg (1 or 0).  



process.  
 We have considered a three-legged robot in a very simple 
environment. The robot must learn by itself to stand up on its 
three legs starting from any configuration, much like a baby 
when it is learning to stand. The example is quite simple from 
an application point of view, but it is useful in order to 
illustrate how the mechanism works and how it really adapts 
to changing environmental conditions. More complex 
examples would hide the operation of the mechanism.  
 
6.1. Rule Based World Models 
 
In the beginning of the process the robot has no clue on what 
its environment is. It has a sensor that indicates the height of 
its body and three actuators that move the legs. In this first 
case the legs have just two possible positions, up and down, 
which have been encoded using a binary representation. 
Obviously, before the robot can do anything about obtaining 
the highest possible satisfaction level (getting up) it must 
establish the relationships between actions, perceptions and 
internal state so that an informed action can be taken in order 
to achieve complete satisfaction. It must obtain a good model 
it can use in order to evaluate possible strategies. 
 We have encoded each model as a set of rules that 
describe the world. In figure 2 we display one of these rules 
and its encoding. Each rule represents the conditions to be 
matched in each particular situation (the particular inputs and 
action) and the consequences of the rules that encode the new 
predicted readings in the external and internal sensors. The 
initially random model base has a population of 2000 
individuals, each one made up of 832 genes. They are 
distributed in 64 rules of 13 elements (see figure 2).  In the 
case of the strategy base, we encoded each strategy as a 
sequence of three actions. 
 The first step in the mechanism is the evolution of the 
model base. After a fixed number of generations we select a 
world model and use it to test the strategies in the evolution of 
the strategy base. After the evolution of the strategies we 
select one and it is executed in the real world. 
 As shown in figure 3, when the robot starts to operate in 

its world, as all the models are random, its information about 
the world is basically nil. Consequently, any strategy it 

decides to carry out based on these models will be no more 
than a random motion of its legs. Through repeated random 
actions, the robot can start obtaining associations of actions 
and their consequences on its internal and external 
perceptions and thus use these pairs in order to evolve the 
model population. As this evolution progresses, the models 
become increasingly better and thus, the current model 
represents the real world in a more accurate manner. 
Consequently, the actions (strategies) selected as good using 
this model become more appropriate as time progresses. 
Finally, a moment comes when the representation of the 
world provided by the current model is good enough for the 
robot to be able to select the optimal strategy in order to 
achieve its objective (in this case, stand at its maximum 
height). During the evolution, the tripod acquires wrong leg 
positions, as shown in figure 3, until it reaches the desired one 
with the three legs up (we use this configuration as the 
starting point in figure 5a).  Each iteration of the mechanism 
implies 20 evolutionary generations for the models and 4 
generations for the evolution of strategies. 

Figure 4 represents the difference between the 
representation provided by the current model each instant of 
time and the real world in each iteration of the evolutionary 
process. This figure is included only for the purpose of 
explaining the evolution. In the on-line learning of the 
model, the genetic algorithm is not aware of the complete 
real world, only of the difference between the predictions 
made by each model in the population and the real inputs 
once an action has been carried out. To accelerate evolution, 
we have introduced a short span of memory containing a 
few prediction-real value pairs obtained in previous instants 
of time. Thus, the fitness function for the models includes 
the last four results (the last four rules) obtained from the 
mechanism. This makes evolution smoother as the fitness 
function only changes slightly between two iterations. For 
each model, its fitness is calculated as the sum of the known 
fitness of each one of its rules. Usually, as the robots 
operate in unknown environments and are only aware of the 
results of the actions they have carried out, only a few of the 
rules have been evaluated. In addition, the persistence of the 

evaluated values of rules is rather short due to the fact that 
as evolution progresses they undergo crossover and 

Figure 3: Sequence of five consecutive actions for the tripod robot while the models are random. The position of the 
legs will change continuously until the models become correct and the desired configuration (three legs up) is achieved. 
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Figure 4: Difference between the model representation and 
the real world  

mutation, which destroy this information. This is not 

necessarily bad, as this destruction allows the system to 
generate new alternatives in a guided manner, thus 
permitting the exploration of new possibilities for the 
models and strategies. Having perfect persistence of the 
evaluation of rules would lead to a static representation of 
the world, with no possible improvement. 

This process has allowed the robot, as shown in figure 
5, to obtain a creative solution to its problem. It had no clue 

on how to achieve its optimal state, and through interaction 
with the world it has obtained a model of this world that is 
good enough to evaluate strategies and thus obtain the 
optimal one. 

We have also wanted to test the ability of the 
mechanism to make use of previous experience in order to 
generate new solutions. Previous experience is stored in the 
model base and in the strategy base. The models in the base 
have evolved to be a good representation of worlds the 
robot has been inserted in, and the strategy base includes 
strategies that have been more successful in previous 
instants of time. Consequently, if we change some 
parameter in the world or the objectives of the robot, it will 
start the evolution of new models or strategies from those in 
the base, thus obtaining a good solution for the slightly 
modified new world in a much shorter time, as shown in the 
sequences of figure 5. As we mention before, the first goal 
for the tripod was to stand on its three legs. This was 
obtained in 2500 iterations considering that if in 10 
consecutive iterations (200 generations of model base 
evolution and 40 of strategy base evolution) the leg 
positions did not change, this position was stable. In figure 
5, we show 3 different examples in which the goal was 
changed. The first five images (figure 5a) show the tripod 
starting from the previous goal (three legs up) and how it 
reaches a new one (left and center legs down, right leg up) 
in just 2 iterations. The tripod maintains this new goal until 
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Figure 5: Three different sequences of five consecutive actions for the tripod robot, starting from the previous position. In figure 
5a the starting position is: left-leg up, center-leg up, right-leg up and the goal position is: down-down-up reached after two 
intermediate iterations. In figure 5b the starting position is: down-down-up and the goal is:  up-down-up reached again in two 
iterations. Finally, in figure 5c the starting position is: up-down-up and the goal is down-down-down reached in just one 
intermediate iteration 



we change it 10 iterations later. The next five images (figure 
5b) show the tripod starting again from the previous 
position and how it reaches the goal through two wrong 
intermediate positions. The last sequence of five images 
(figure 5c) show a better result needing just one iteration to 
achieve the desired position. 

 
6.2. World model using neural networks 
 
Instead of using rule based world models, in this example we 
have developed a model base using neural networks. Now, as 
indicated in figure 6, the legs perform relative motions 
(encoded continuously from –1 to 1) from its previous 
position (internal perception). Consequently, the robot can 
move up or down by small amounts. We have introduced a 
new field in t+1and it’s a value of satisfaction for the robot 
(how close it is to the goal).  
 The world models are neural networks with 6 inputs 
(internal perceptions and strategy in t) and 4 outputs 
(predicted internal perceptions and satisfaction for t+1). We 
evolve the weights of the neural networks using as fitness 
function the similarity, in the form of an Euclidean distance, 
between the values predicted by the network and those that 
were obtained in reality. Thus, the network now must obtain 
the function that relates values in t with values in t+1.  
 The strategies base is similar to the previous example 
because we evolve the strategies directly (as action strings). 
The difference is that in this case the values are continuous 
from –1 to 1. 
 The mechanism works as follows: starting from a real 
(but random) set of values we evolve the models of world 
(weights of the network) using this set of real values in the 
fitness function. We take the first 6 values of the set and 
introduce them in each neural network. The difference 
between the output given by the network and the last 4 values 
of the set is the fitness value for each individual. After a fixed 
number of generations, we select the best network (the best 
world model) and we use it to evaluate the strategies during 
the evolution of the strategy base. Each strategy (each 
individual in this second evolution) is applied, together with 
the values for the internal perception in t, to the 6 inputs of the 
selected network, and in this case the fitness of that strategy is 
the satisfaction given by the output of the network. Again, 

after a fixed number of generations we select one strategy, 
the one that is predicted to produce the highest satisfaction, 
and execute it in the real world. This will result in a new 
perception in t+1 and a new value of satisfaction, so we have 
a new set of values (real behavior) to use in the fitness 
function corresponding to the evolution of the world models 
in the next iteration of the whole mechanism. 
 One must be careful when implementing this 
mechanism because the fitness function for the world models 
is changed each iteration with the world (each moment of 
time the agent works on local objectives and perceptions) and 
this may cause the evolutions of the models to oscillate. To 
address this question, we must prevent the model base from 
evolving too much between two interactions with the real 
world. If the model base evolves too much, when we change 
the fitness function the best individual (model) will probably 
change and the solution oscillates. On the other hand, if we do 
not evolve the models enough between interactions with the 
world, there will be no convergence. We expect about 2 or 4 
generations of evolution to be enough with each set of values 
(fitness function) to obtain a smooth convergence.  
 The goal of this example is the same as before: the robot 
must learn to stand up on its three legs starting from any 
position. The main difference is that now the number of 
possible values for the internal perceptions and actions are 
infinite (continuous) and the search space is much bigger. 
 To obtain these results we have used an ANN with 6 
input neurons, two hidden layers (each one with 8 neurons) 
and 4 output neurons. The model base had a population of 
1000 individuals and the strategies base had a population of 
100 individuals. Each iteration implied 2 generations of 
evolution in both cases. 
 In figure 7 we present some results corresponding to the 
position of the robot. A position of 30 implies the robot 
standing straight on its three legs and position 3 implies the 
robot body is touching the ground and all three legs are up. 
Before being able to obtain a good result, the robot must 
explore the world. This was achieved by changing its 
objective often for a while until it had a chance of being 
presented with different starting positions and actions. On the 
figure this is what takes place up to interaction point 1100. 
Obviously, during this first stage, the motion of the robot is 
quite erratic as it is basically exploring the consequences of its 
own actions on its environment (perceptions) and satisfaction.  

Figure 6: Continuous encoding of the values used to obtain the world model. The internal perception takes values from 1.0 to 
10.0 as a function of the leg height (1.0 means down and 10.0 high) and the strategy is an incremental action (movement of the 
legs) from the previous position (given by the internal perception). The first value of the strategy is related to the first value of 
the internal perception and so on. 



 The second section (section B) of figure 7, corresponds 
to the operation of the robot when its objective has been set to 
get up on all three legs as high as possible. That is, 
satisfaction increases with height. After a few doubtful 
interactions with the world, the robot learns this relationship 
between satisfaction and actions and goes straight into this 
state.  
 To test the adaptability of the mechanism, we now 
change the objective of the robot so that maximum 
satisfaction is achieved when it is flat on the ground (height 
3). This implies a new mapping between actions, previous 
state and satisfaction although, if it has learnt the model of the 
world correctly, it does not imply a new mapping between 
actions and perceptions. Consequently, the time required to 
obtain strategies that are appropriate for this objective should 
be reduced. This is clearly seen in part C of figure 7. Finally, 
just to show that this adaptability not only works for the 
extremes, we allowed the robot to obtain maximum 
satisfaction when it reached a height of 21 (part D).  
 
7. Conclusions 
 
In this paper we tried to provide a first indication of how a 
cognitive operation model for an artificial organism based 
on a darwinist mechanism could work so as not to 
predetermine de behaviors of the organism. This model is 
based on a two level hierarchy of processes. On one hand 
we have an unconscious level, which generates models of 
environment and internal state using genetic algorithm 
processing techniques. Through an evaluation of the models 
using the sensory information we choose a current model 
that is employed, in a conscious level, for the evaluation of 
the strategies, which are selected as a function of how well 
they satisfy the motivations of the organism. Once the 
strategy has been selected it is applied and the whole 
process starts again. This provides an “evolutionary 
learning” mechanism that may be employed on-line in 
dynamic environments, where the final model is a summary 
of the correlation of the information the organism has 
considered relevant for the required behaviors, unlike 
traditional simulation in robotics, where the designer 
determines the previous simulations of environment and 
robot. 
 For the learning that takes place not to be lost, it is 
necessary to store the models and strategies that were 
successful and use them as seeds in new evolution processes. 
This seeds, when appropriately used, are a way of introducing 
experience into the reasoning process, and the random genetic 
mutation and the generation of random elements of the 
populations of models and strategies are a way of generating 
variety and new models and strategies or parts of them. These 
two processes give way to original solutions and experience 
based reasoning. 
 This very simple model can be extended by using 

evaluation functions with memory, that is, evaluation 

functions for the models that take into account series of inputs 
or evaluation of strategies using several models and selecting 
as a function of combined fitness. The evaluation functions 
for the models can be weighed by the motivations so that a 
given motivation in a given degree leads to models that are 
more selective towards certain perceptions. We can even 
provide more complex hierarchical structures with models 
and submodules, the former combinations of the later .The 
same can be applied to strategies and substrategies. 
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