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Abstract—This paper deals with the problem of 

classifying processes using the temporal information in the 

sequence of hyperspectral images that are obtained as they 

take place. That is, taking into account the temporal 

evolution of the process in the discrimination that must be 

made.  To this end we have considered a particular type of 

artificial neural networks with trainable delays in their 

synapses. The classification scheme is studied and applied to 

the case of resin curing processes. Several test cases 

involving different proportions of resin components as well 

as certain environmental conditions such as humidity were 

created and the system was tested over them producing very 

promising results. 
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I. INTRODUCTION  

Hyperspectral imaging has traditionally been used in 
remote sensing instruments. The first hyperspectrometers 
were developed for imaging from high flying airborne 
platforms or satellites. They were usually large 
instruments with complex deployment and handling 
characteristics typically run by space agencies or other 
large providers of imaging resources. However, due to 
the popularization of imaging sensors and the advances in 
digital photography and video capture technology, in the 
last ten years we have seen the implementation of many 
smaller designs and platforms that have opened up new 
application domains, especially in close up inspection 
tasks such as medical imaging or quality control in 
processing plants, leading to a flurry of activity in 
research into new algorithms and strategies that would 
adapt to these new application areas.  

In hyperspectral imaging systems, for each spatial 
resolution element (pixel), data is collected with high 
spectral resolution over the electromagnetic spectrum in 
the 400-2500 nm band (visible to near infrared). It is 
commonplace to use 50 to 250 spectral bands with 
bandwidths in the 5 to 20 nm range. The large amount of 
information that any hyperspectral image provides 
permits a detailed description of the spectral signature for 
each pixel in the image, thus greatly improving the ability 
to detect and identify individual materials or classes with 
respect to other remote sensing techniques. 

Unfortunately, on the other hand, these large amounts of 
data are the source of some of the main challenges 
currently associated with hyperspectral imaging: efficient 
handling of high data rates and accurate and fast 
segmentation of images. Hyperspectrometric systems 
represent today a mature technology, and have been 
applied to many different instances. Typical applications 
of remote hyperspectral sensing are related to vegetation 
monitoring [1]-[3], target detection [4], [5], and many 
others. In addition to remote sensing applications, 
hyperspectral imaging is also being used in close up 
inspection tasks such as medical imaging or processing 
plant visual inspection [6], [7].  

There is presently a wide open field for new 
applications using hyperspectral imaging at close and 
mid-range that would make these instruments much more 
accessible and ubiquitous. However, it does require an 
impulse in two main directions for the technology to 
become commonplace and popular. On one hand, 
hyperspectrometers must be made more affordable, small, 
light and rugged and, on the other, they must be made as 
autonomous as possible and very easy to use by non-
experts. This obviously requires developments in the 
hardware and control structure and motivates the research 
into efficient and accurate methods to process this data. 
In particular, as autonomy and data processing resilience 
would be a very important aspect of this new generation 
of sensors, the introduction of more intensive 
computational intelligence techniques that allow the 
systems to be used in less specialized applications than 
those currently contemplated becomes a necessity.  

According to Manolakis et al [8], most algorithms 
used in hyperspectral applications can be grouped into 
four categories: change detection, target/anomaly 
detection, classification, and spectral unmixing. Up to 
now, almost all research efforts have focused on the 
analysis of static hyperspectral images in terms of the last 
three categories. However, in the last few years, as a 
consequence of improvements in hyperspectrometers, it is 
becoming feasible to capture a continuous flux of images 
allowing one to look at hyperspectral information 
dynamically. Some algorithms have been designed using 
temporal information [9] [10], mostly for the detection of 
changes, but still without really using the evolution seen 
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in the frame sequence as a classification strategy. Here, 
our objective is to formulate techniques that permit 
addressing the problem of using temporal sequences in 
the classification process and not only to detect changes. 
In fact, there are many problems where information from 
a single image provides ambiguous classification results 
and it is the integration of the evolution of the subject in 
time that really provides an unambiguous classification.  

This problem has been tackled in the image 
processing field dealing with one or three dimensional 
(RGB) images by using video sequences to obtain better 
classifications, to eliminate noise or to improve image 
resolution. Here the objective is to extend this work to the 
realm of high dimensional images, such as those obtained 
from hyperspectral sensors, through the use of new 
techniques and algorithms that are adapted to the high 
dimensionality involved. In particular, in this paper we 
make use of including specific types of neural network 
architectures and training procedures for the temporal 
processing of this type of images.   

 

II. SENSING SYSTEM 

The sensor used in this work has been developed by 
our group as a small, light and easy to deploy 
hyperspectral sensor that was designed to explore the 400 
to 1000 nm band with a spectral resolution of up to 1040 
bands. Figure 1 displays the experimental setup that was 
used and a schematic view of the hyperspectrometer. This 
sensor is capable of capturing up to 47.2 hyperspectral 
1040 pixel lines per second with the spectral depth 
indicated before. 

III. TEMPORAL BASED PIXEL CLASSIFICATION 

To address the problem of performing classifications 
taking into account the temporal evolution of the spectra 
of the pixels, we have chosen to use a neural network 
architecture developed in our group that is called 
Temporal Delay Based ANN as well as its training 
algorithm (TDBP). The architecture and training 
algorithm of the artificial neural network we consider 
were introduced in [11], [12]. The network consists of 
several layers of neurons connected like a Multiple Layer 
Perceptron (MLP), that is, every neuron of one layer is 
connected through a synapsis to every neuron of the next 
layer. Each neuron performs a sum of its inputs and 
passes these values through some non-linear function (in 
this case a sigmoid). It is obviously a feed-forward 
network. The only difference with respect to a traditional 
MLP is that the synapses are represented by two trainable 
parameters: the classical weight term and a delay term. 
Consequently, now the synaptic connections between 

neurons are characterized by a pair of values, (wij,  ij), 
where wij is the weight describing the ability of the 
synapsis to transmit information from neuron i to neuron j 

and  ij is a delay, which can be taken as an indication of 
the length of the synapsis between neurons i and j, the 
longer it is, it will take more time for information to 
traverse it and reach the target neuron.  

The training algorithm is described in detail in [11] 
where it was used on one-dimensional signals. Here we 
will just provide a summary of its main points and how it 
is used on multidimensional signals.  

The main assumption during training in this algorithm 
is that each neuron in a given layer can choose the delay 
it wishes to impose on its inputs. Time is discretized into 
instants, each one of which corresponds to the period of 
time between an input to the network and the next input. 
Every neuron of the network computes an output each 
instant of time. 

In order to choose from the possible inputs to a 
neuron the ones we are actually going to take as input it 
in a given instant of time, we add a selection function to 
the processing of the neuron. This selection function can 
be something as simple as: 
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Figure 1. Experimental setup (top) and schematic view of the 

hyperspectrometer developed 
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Making output of neuron k in instant t: 
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where F is the activation function of the neuron, hij is 
the output of neuron i of the previous layer in instant j 
and wik is the weight of the synapsis between neuron i and 
neuron k. The first sum is over all the neurons that reach 
neuron k (those of the previous layer) and the second one 
is over all the instants of time considered. 

The result of this function is the sum of the outputs of 

the hidden neurons in times t- jk (where  jk is the delay in 
the synapsis) weighed by the corresponding weight 
values.  

This determines the output of every neuron as a 
function of the outputs of the neurons in the previous 
layer and the weights and delays in the synapses. To train 
these weights and delays we have resorted to a 
modification of the basic gradient descent algorithm 
employed in traditional backpropagation, taking into 
account the delay terms when computing the gradients of 
the error with respect to weights and delays. Thus, the 
gradient terms can be written as: 
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in which Etotal is the total squared error for all the training 
vectors and 
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where Tk is the target output, Ok the one really obtained 
and ONetk is the combination of inputs to neuron k, when 
we consider output neurons and: 
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where index r represents the neuron of the next layer, 
whether output or hidden. We assume: 
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for the case of neurons in a hidden layer.  
Assuming there is certain continuity in the temporal 

variation of the outputs of the neurons, the derivative in 
hNet of equation (9) has been discretized in order to 
obtain (7). 

Summarizing, by discretizing the time derivative 
simple expressions may be obtained for the modification 
of the weights and delays of the synapses in an algorithm 
that is basically a backpropagation algorithm where the 
activation function of the neuron has been modified to 
permit selecting delays or, in order words, choosing from 
the list of previous outputs of the neuron en the previous 
layer. By adding input neurons to the network, any 
dimensionality of the signals can be chosen.  

IV. EXPERIMENTAL RESULTS 

The objective of this paper is to demonstrate how by 
considering the temporal sequence of hyperspectral 
images taken during the evolution or a process and 
appropriately processing them we can glean information 
that is hard or impossible to obtain using static images. 
To test this hypothesis we have performed a series of 
experiments related to quality control of the drying or 
curing processes after applying different surface coatings. 
The basic idea is to determine if the resulting surface 
coating meets the quality levels as a function of the 
temporal drying sequence. To this end, we make use of 
the sequence of hyperspectral images of the products as 
time progresses. To obtain adequately cured resins it is 
necessary to mix certain components (in this case two) in 
the appropriate proportions and let the resin cure for a 
period of time under adequate environmental conditions. 
In fact, this is really a spatial-temporal problem as the 
classification may be different for different areas of the 
resin surface as shown in figure 2. In the end, it is the 
determination of whether the resin has cured 
appropriately in every point that is important. This is 
where the use of hyperspectral imaging makes sense. 

 

 
Several different mixtures were made under different 

humidity conditions and with different proportions of 
components. One of them, which will be called “correct 
curing process” in the graphics and comments that will 
follow, has been taken as the reference mixture and 
conditions for which the curing process is optimal. The 

Figure 2. Three instants in the evolution of the drying process as 
obtained by composing bands from the visible spectra. 
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remaining cases were considered suboptimal. Table 1 
provides a brief description of the different experiments.  

Using the hyperspectrometric setup described before, 
the mixtures were made and left to cure for 500 seconds. 
Images were taken by the hyperspectrometer of a line of 
1000 points traversing the mixtures at a rate of close to 
one image per second (485 images in 500 seconds). The 
spectra corresponding to the points obtained were 
normalized and corrected using as a reference the 
background area where there was no mixture. The 
objective was for the processing system to discriminate 
the optimal curing processes from suboptimal ones as 
soon as possible.  Figure 2 presents the visual appearance 
of the curing process as it progresses. 

 

 
 

As a first test in order to validate the need to perform a 

time based processing, we evaluated the possibility of 

discriminating the correctly cured resin from the rest once 

the whole curing process was finished. Figure 3 displays 

the spectra corresponding to points on three different 

experiments once all of them had cured. As shown, the 

spectra are practically identical and it was impossible to 

obtain any kind of correct classification using only this 

information. 

 
As a consequence, we considered the temporal 

evolution and introduced the delay based neural networks 

as classifiers. Figure 4 displays a sequence of spectra for 

two cases, one the correct curing process and another one 

that is incorrect. 

To train these networks we used 80% of the samples 

obtained as described above. The remaining 20% were 

used as test samples. For each experiment, the temporal 

sequence was discretized into ten time intervals by 

averaging the spectra within each interval and the 

spectra themselves were binned into 16 bands. A 16 

input TDANN was used and different proportions of the 

temporal sequence were used for training and testing in 

order to determine how much temporal information 

from the curing process was necessary in order to 

achieve 100% discrimination (in this case positive 

classification would return a value of 0.5 and a negative 

of -0.5). This process was started using the first 36 

seconds of curing and, as shown in figure 5, even 

though with this information a certain order in terms of 

quality seems to be present, the discrimination is still 

not good enough and there is a certain level of 

confusion. This level decreases if more time is 

considered as shown in the graphs of figure 6, 

corresponding to 42, 47, 53 and 480 seconds of 

sampling. In fact, in cases with more than 47 seconds of 

sampling, all the correctly cured samples (blue dots) are 

appropriately classified with a value above zero and all 

the rest of incorrect curing processes are assigned values 

Figure 3. Spectra of the final resins after curing has ended for 

different cases (a correct and three incorrect curing processes). 

Table I. CURING PROCESSES  
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below zero by the network. Consequently, by 

monitoring the processes for fifty seconds we are able to 

discriminate perfectly if it is going to cure correctly or 

not. Obviously, if more time is considered, the results 

become even better as shown in the bottom graph 

corresponding to the results produced by the network 

considering 48 seconds, that is, almost the whole 500 

second time interval. 

 
 

 
 
 
 

 

 

Figure 6. Same as figure 5 (including process labels) but taking into 
account, from top to bottom, 42, 47, 53 and 480 seconds of curing 

process. 

Figure 5. Results produced by the TDANN when using a 
sequence of 10 averaged spectra from the first 36 seconds of 

the curing process.  

Figure 4. Evolution of the spectra during the curing process for the 

correct one (top) and that of experiment 4.3 (bottom). 
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Finally, and to demonstrate how fast this algorithm 

can learn, in Figure 7 we display the evolution of the 

Mean Squared Error as training takes place for some of 

the previous cases. The algorithm only requires around 

150 epochs of training to achieve very low errors in those 

cases where the temporal information is enough to 

establish a reliable discrimination. In fact, this number 

decreases to around 70 epochs in the case of the 480 

second sampling. 

 

 

V. CONCLUSIONS 

In this paper we have shown how the temporal 
evolution of the spectra within hyperspectral images can 
be used in order to classify the quality of processes even 
when the final spectra are almost the same for correctly 
performed processes or processes with deficiencies. To 
this end we have considered the application of synaptic 
delay based artificial neural networks to the task.  

It has been shown that this type of approach can 
discriminate very clearly between correctly performed 
curing processes and processes that present problems due 
to wrong component mixtures or humidity. In fact, this 
discrimination can be performed using just the first few 
seconds of the curing process. 

We are now in the process of extending these results 
to other processes in what we think is a very promising 
approach to expand the use of hyperspectral imaging. 
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Figure 7. Training Error for the training processes using 47, 53 and 

480 seconds of sampling 


