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Abstract. This paper is concerned with the comparison of three types of Gaussian 
based Artificial Neural Networks in the very high dimensionality classification 
problems found in hyperspectral signal processing. In particular, they have been 
compared for the spectral unmixing problem given the fact that the requirements 
for this type of classification are very different from other realms in two aspects: 
there are usually very few training samples leading to networks that are very 
easily overtrained, and these samples are not usually representative in terms of 
sampling the whole input-output space. The networks selected for comparison go 
from the classical Radial Basis Function (RBF) network to the more complex 
Gaussian Synapse Based Network (GSBN) considering an intermediate type, the 
Radial Basis Function with Multiple Deviation (RBFMD). The comparisons were 
carried out when processing a benchmark set of synthetic hyperspectral images 
containing mixtures of spectra from materials found in the US Geological Service 
database. 

1 Introduction 

As remote sensing of the earth becomes a more important element in the toolbox of 
scientists, the mechanisms for processing the ever larger data streams coming from the 
instruments used for this purpose increase their relevance. High resolution 
hyperspectrometers are among the instruments that will be used in an ever increasing 
number [1][2][3]. In hyperspectral remote sensing images, each spatial resolution 
element data is acquired with high spectral resolution over the electromagnetic spectrum 
ranging the 400-2500 nm (visible to near infrared). It is commonplace to use 50 to 250 
spectral bands of bandwidths in the 5 to 20 nm range. The large amount of information 
hyperspectral imaging provides permits a detailed description of the spectral signature 
thus greatly improving the ability to detect and identify individual materials or classes 
with respect to other remote sensing techniques.  

Any analysis or classification method for hyperspectral image processing is aimed at 
the identification of what pixels contain different spectrally distinct materials 
(endmembers) and in what proportions. A number of approaches based on statistical 
theory or using filtering or correlations have been applied to the analysis of these data 
sets by different authors with the objective of improving the classification results [4]. 
Some of these methods are compared using classification performance in [5].  

From this point of view, artificial neural networks (ANNs) appear as a very suitable 
and effective alternative to deal with spectral image analysis difficulties [6] [7].  In the 



case of ANNs trained using supervised training algorithms, the main drawback to 
performing the analysis and classification of hyperspectral remote sensing data is the 
difficulty in obtaining labelled sample data that can be trusted to the point of using it for 
quantitative evaluation. The scarcity of ground truth data has been recognized and 
specific training strategies have been devised to cope with this handicap [8], [9].  In fact, 
in an ideal world, we would be able to obtain a training procedure that produces good 
classifiers from very small training sets. This problem becomes even more pronounced 
when pixels correspond to combinations of materials, that is, the “spectral unmixing” 
problem [6]. Ideally, hyperspectral images may allow the identification of single pixel 
materials. However as these pixels are frequently combinations of materials, it is often a 
plus to be able to decompose each pixel spectrum into its constituent material spectra. 
The cause of the mixture of several material spectra into a hyperspectral pixel spectrum 
may be that different land covers are included in the area whose radiance measurement 
results in an image pixel. 

In this work we assume a linear mixture model, in which several basic materials 
(endmembers) are combined according to some abundance coefficients at each image 
pixel. Taking its spatial distribution, the abundance coefficients may be visualized as 
abundance images, which provide a description of the spatial distribution of the 
material. The computation of the abundance coefficients given a pixel spectrum and a 
set of endmembers is what is termed the unmixing procedure. If the endmembers are 
given, the unmixing procedure is equivalent to the parallel detection of the spectral 
features represented by the endmembers.  

One basic approach is classical, if you concentrate only on what is relevant the 
classification becomes much more robust and efficient. This is the approach followed in 
the work leading to this paper. An Artificial Neural Network architecture and training 
algorithm that implement an automatic procedure to concentrate on what is relevant and 
ignore what is not straight from the training set is required in order to effectively 
perform the task. To do this, many authors have resorted to Gaussian based ANNs as a 
way to implicitly establish this filtering ability in the network. This is the case of the 
work of Dundar and Landgrebe [10] with RBFs, where the authors claim that Gaussian 
RBFs have proven to be in their case the most effective network for hyperspectral image 
processing, or that of Crespo et al. [11] with GSBNs where the Gaussian processing has 
been transferred to the synapses, thus providing more degrees of freedom.  

In this paper the objective is to evaluate the performance of three Gaussian based 
types of ANNs when dealing with multidimensional signals and very few training 
points are available. These three types of networks range from the classical Radial Basis 
Function Network as proposed above, to a modification of RBFs where they have been 
endowed with trainable deviations for each dimension, to the more versatile  Gaussian 
Synapse Based networks. In the sections that follow we will describe this networks and 
through a similar backpropagation based training algorithm we will compare their 
performance when unmixing a benchmark set of images based on Graña et al´s 
repository. 



2 Description of the ANNs 

Gaussian based ANNs have been widely applied in image processing due to their 
capabilities in noise filtering. As commented in the previous section, we are going to 
compare the results provided by three different types of these networks. In the radial 
basis function (RBF) neural networks the input layer directly transmits the inputs to the 
neurons of the hidden layer. In these neurons the Gaussian function is applied over the 
inputs by using one parameter per synapse (center) and one parameter per hidden 
neuron (deviation). The output provided by the neurons in the hidden layer passes to the 
output neurons trough a linear combination of weights as in a perceptron. The radial 
basis function with multiple deviation (RBFMD) neural networks are structurally 
similar to RBF networks but having one deviation parameter per synapse instead of per 
neuron in the hidden layer. Finally, the Gaussian synapse based networks (GSBN) have 
a multilayer perceptron structure, but replacing the simple weights used in the synapses 
by Gaussian functions in order to filter the inputs. The main difference between these 
three types of networks is the number of parameters to be trained, being the RBF the 
one requiring fewer parameters and the GSBN the one requiring most. As it is shown in 

Fig. 1. Top graph represents an RBF neural network, middle graph and RBFMD neural 
network and bottom graph a GSBN.  
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the next section, this number of parameters determines the complexity of the learning 
process and the generalization capability.  

The relevant differences between these types of ANNs arise from their basic 
structural units as shown in Fig. 1. These units have two input neurons (x and y) and one 
output neuron (z). The top graph of Fig. 1 corresponds to a RBF neural network, in 
which a single parameter per synapse (the centers Cx and Cy) should be trained. The 
middle graph corresponds to a RBFMD neural network where two parameters per 
synapse must be trained (the centers Cx and Cy and the deviations dx and dy). Finally, at 
the bottom is a GSBN neural network where 3 parameters per synapse should be trained 
(ax, bx, cx, ay, by and cy). The right part of Fig. 1 provides a representation of the decision 
boundaries implementable by each of these three ANNs when the input variables range 
between -3 and 3. This corresponds to the possible outputs provided by a certain neuron 

Fig. 3. Modeling over the training set (left) and the test set (right) provided by one of the 
networks for two significant error values: 0.009 in top graphs and 0.005 in bottom graph. 
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Fig. 2. Representation of the spectra corresponding to the 5 endmembers 
used to generate the training and test data sets. 
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of the hidden layer to the next layer. As it can be seen, RBF networks (top graph) 
provide symmetric decision boundaries in both axes while the RBFMD ones (middle 
graph) are able to filter independently on each axis presenting a more flexible decision 
boundary. This capability is very suitable for our purposes because the network has 
higher degree of freedom to filter the information. In the case of the GSBN network 
(bottom graph) we can see a more complex decision boundary because the filtering 
appears in both axes independently again and, in addition, the shared zone could be 
discriminated through the value of the sigmoids in the neurons. 

The main reason for studying networks that provide more complex and flexible 
decision boundaries is the high dimensionality of the search space and the complexity of 
the subspace to discriminate in hyperespectral unmixing problems. The application of 
these networks increases the number of parameters that must be trained and, 
consequently, the computational cost but it should be compensated by the decrease of 
the minimum necessary network size and, what is more important, the speed of the 
network training stage as well as the need to use fewer training samples. 

In the next section we will show the result of the comparison between the three types 
of networks presented applied to a hyperespectral image. 

3 Comparison of networks 

To compare the networks we have used a set of 5 synthetic endmembers developed by 
Graña et al. [14] which is shown in Fig. 2. A training set containing 10 spectra resulting 
from the linear combination of these 5 endmembers and a test set of 1000 spectra have 
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Fig. 4. Number of neurons in the hidden layer versus the number of iterations to 
achieve the desired for the 3 types of networks (RBF represented by hollows, 
RBFMD by solids and GSBN by marks) with 3 different mu values for each one 



been created. The training algorithms applied are variations of the classical 
backpropagation algorithm modified for the radial basis functions [13] and for the 
Gaussian synapses [12]. This training process is applied over the training set for each 
type of network and every iteration the network is tested over the test set. 

First of all, in Fig. 3 we have represented the modeling over the training and the test 
sets provided by one of the networks for two significant error values. From the curves 
we can establish that the learning has been successful when the MSE is lower than 
0.005 according to the modeling over the test set. 

To measure the quality of the network obtained we will focus on two main 
parameters: the number of iterations required to achieve a given error value and the 
stability of error evolution (to detect overtraining problems). In the first case, in order to 
compare the three types of networks we have used two parameters: the learning 

Fig. 5. MSE evolution with respect to the number of iterations in the 
training process and in the test process using a RBF network with 8 
neurons (top graph), a RBFMD with 4 neurons (middle graph) and a 
GSBN with 2 neurons (bottom graph). 
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coefficient mu and the number of neurons in the hidden layer. In Fig. 4 we show number 
of neurons in the hidden layer versus the number of iterations to achieve the desired 
error for the 3 types of networks (RBF represented by hollow symbols, RBFMD by 
solid symbols and GSBN by line symbols) and with 3 different mu values for each one. 
The data shown in the figure provide a good indicator of several facts. On one hand, 
RBF based networks are a lot slower than other types of networks in every case, even 
when taking into account the same number of parameters. Take into account, that an 
RBF with 6 neurons has the same number of trainable parameters than a RBFMD with 
3 neurons and a GSBN with 2 neurons. The RBFMD is clearly more efficient in terms 
of reaching the solution in less iterations, but the one that performs the best is the 
GSBN. This is so for just about any size of the network. The figure shows that the 
influence of the mu parameter is only significant in the case of GSBN networks where 
just low mu values provide valid errors, if training is carried out with high mu the 
networks take very long to achieve a result and often they will end up overtraining.. 

In terms of overtraining, taking into account the different number of parameters that 
characterize each type of network, we must select networks with different number of 
neurons in the hidden layer in order to perform an equivalent comparison. Thus, in Fig. 
5 we have represented the MSE evolution against the number of iterations in the 
training process and in the test process using a RBF network with 8 neurons (top graph), 
a RBFMD with 4 neurons (middle graph) and a GSBN with 2 neurons (bottom graph).  
In this test, we have provided a little advantage for the RBF in terms of number of 
parameters, but we wanted to make sure it did not overtrain. As we can see, in the case 
of the RBF network, the evolution of the error in the test process is highly stable 
because the network does not overtrain. On the other hand, GSBN and, mainly, the 
RBFMD networks are more unstable they are very sensitive to overtraining and having 
achieved a given error for the test set as training progresses this level of error may 
increase and even create large oscillations in the case of RBFMD with large mus.. 

This way, from these results the main conclusion we can extract is that although the 
three types of networks achieve the desired error value (MSE=0.005) in almost all 
cases, the RBF networks are the one that need more iterations for training for the same 
number of trainable parameters. The GSBN networks are the ones that need less 
iterations. Finally, RBFMD are in an intermediate point in both features but are quite 
sensitive to overtraining, probably because of the deviation parameter in the 
denominator of the exponential. 

Conclusions 

In this paper we have compared three types of Gaussian based artificial neural networks 
in terms of their performance when addressing the spectral unmixing problem in a set of 
benchmark synthetic hyperspectral images. From this comparison it is clear that for 
equivalent number of parameters in the networks, the Gaussian synapse based networks 
converge to very good classification results in less iterations than the other two, whereas 
the radial basis functions do so in a much smoother fashion. In terms of the overtraining 
behavior, it is clear to see that the RBF networks are much harder to overtrain and thus 
perform much better on the test sets independently of the length of the training period 



(which in many cases is very hard to set beforehand), obviously, at the cost of a much 
slower training process. 
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