
 
 

 

  

Abstract—This paper presents the initial results obtained in 
the application of the MotivEn motivational system in 
developmental robotics. The key feature of MotivEn is that it 
uses extrinsic motivations as the primary drive to guide the 
robot development, including intrinsic motivations to improve 
learning. We analyze here through an experiment with a 
simulated robot that this both types of motivations are required. 

I. INTRODUCTION 
ognitive architectures (CAs) in developmental robotics 
are based, as opposed to classical symbolic approaches, 

on cognitive processing theories where the key feature is the 
emergence of cognitive capabilities through embodied 
interaction with the real world in an incrementally more 
complex fashion [1]. Developmental robots are guided by 
intrinsic motivations, as can be seen in the most relevant CAs 
of the field, like the iCub CA [2], ERA [3], SASE [4] or 
HAMMER [5]. Following [6], intrinsic motivations drive the 
acquisition of knowledge and skills in a heterostatic fashion, 
that is, in the absence of a goal state that can be reached, 
whereas extrinsic motivations guide development towards a 
homeostatic goal state that can be satiated.  

Thus, developmental robotics CAs use motivations like 
novelty, curiosity, knowledge acquisition or skill 
improvement, as an open-ended mechanism to obtain reliable 
cognitive capabilities [7]. A core idea behind developmental 
robotics is that, once consolidated, such emergent capabilities 
can be used by the robot in later developmental stages to 
fulfill extrinsic motivations, like those provided by a human 
user or other acquired during life [1]. In fact, the 
developmental robotics field arose as a new perspective for 
obtaining real autonomous robots that can operate life-long, 
escaping from the limited vision of classical robotics focused 
in reaching specific goals [2]. Thus, in a certain way, 
developmental robotics CAs have intentionally avoided the 
use of explicit extrinsic motivations. 

Once the validity of the intrinsically motivated robots has 
been widely shown [7], the question that arises is how the 
acquired knowledge and skills can be managed by a CA to 
reach specific goal states if they emerge “freely”. That is, the 
absence of extrinsic motivations to guide robot operation 
leads to a set of questions that must be faced: how can it be 
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guaranteed that the intrinsically motivated robot is acquiring 
the cognitive capabilities it will require in the future? How 
can this emergent knowledge be reused to reach a goal state? 

In this paper, we propose to consider a developmental 
robot as an open-ended system that is guided by extrinsic 
motivations, that is, it has to fulfill some goals in a 
homeostatic fashion. Moreover, the robot must have intrinsic 
motivations, as usual in developmental robotics, which are 
required to accomplish the robot development in the most 
reliable way. To analyze the response of this extrinsically 
guided developmental robot, we have developed a 
motivational engine, called MotivEn, and we have 
implemented some basic examples in simulated experiments 
as a part of the EU’s H2020 DREAM project [8]. Here, we 
will briefly describe the main elements and operation of 
MotivEn (more details in [9]), and we will show the initial 
results obtained in a simulated experiment of autonomous 
goal acquisition when considering intrinsic motivations or not 
as a drive to improve the goal achievement. 

II. MOTIVATIONAL ENGINE (MOTIVEN) 
Given a perceptual state τ(t), MotivEn evaluates each 

future state τ(t+1), proposed by the action chooser of a 
general CA, based on three main motivational components: 

1) Blind intrinsic motivation (Ib): it is active when there is 
no information on whether a goal exists or of how to get to it 
from the current (perceptual) region. It guides the robot 
behavior towards the discovery of unvisited states in the 
perceptual space and operates as an exploratory intrinsic 
process (similar to novelty [1]). 

2) Extrinsic motivation (E): it tries to guide the behavior 
of the robot towards maximizing the reward, that is, towards 
what is typically called the goal of the scenario. The robot 
must create a value function (VF) as an internal representation 
of the utility function that associates an expected future utility 
to any point of the state space. Before MotivEn can start using 
that VF, the CA has to learn it. This process in MotivEn is 
based on the learning scheme used in the Multilevel 
Darwinist Brain cognitive architecture [10], which is an 
on-line neuroevolutionary approach where the VF is 
represented through an ANN. 

A key aspect of MotivEn is the certainty of the VF, an area 
in the state space that represents its reliable coverage. To 
compute it, we have defined a certainty value 𝐶 𝜏  for each 
point of the VF, which corresponds to a measure of how many 
really evaluated trace points are near that state space point 
covered by the VF, modulated by the number of times it 
guided the robot towards achieving the goal [9]. The 
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combination of the expected reward and the certainty of a 
state produces the resulting extrinsic evaluation of a state 
which is what will finally guide the robot. 

3) Certainty-based intrinsic motivation (Icb): it is in 
charge of guiding the robot to improve the VF model. This is 
achieved by improving the sampling of the traces used to 
learn the VF. This motivation seeks to expand the sampled 
area by encouraging moving close to the boundaries of the 
certainty region of the value functions [9].   

In summary, for each candidate state τ(t+1) proposed by 
the action chooser, MotivEn analyzes to what extent it falls 
into the certainty area of the VF. If the certainty value is 
beyond a threshold value (high reliability), the extrinsic 
motivation is used. If it is below the threshold (low 
reliability), the certainty-based intrinsic motivation is 
applied. Finally, it the state falls out of the VF certainty area, 
the blind intrinsic motivation is used to guide the robot. 

III. OPERATION EXAMPLE 
In this example we show how the certainty-based intrinsic 

motivation improves the development of an extrinsically 
guided robot. To do it, we have created a simulated scenario 
(Fig. 1) that contains a blue box, a green button, a red ball and 
a virtual barrier (opaque to the sensors of the robot), which 
divides the arena into two parts. The robot is initially placed 
in the left part of the scenario. The red ball is placed on the 
right side of the scenario, and the robot cannot initially sense 
it. The robot is able to move around this environment and to 
reach the different objects. If it reaches the button, it is 
automatically pushed and the barrier disappears, so it can 
sense the ball. If it reaches the ball, it automatically picks it 
up. Finally, if it reaches the box when it is carrying the ball, it 
receives a reward (right plot). When this happens, the ball is 
returned to its original position, the virtual barrier is restored 
and the robot is placed in a random location of the left part.  

 
Fig.  1. Simulated scenario used in the experiment (left) and a typical 

execution trace followed by the robot when reaching the goal (right) 
 
For this experiment, the response of the scenario to the 

actions of the robot is known a priori (the CA does not have to 
learn the world models), but the robot has no idea where the 
reward is and how to reach it. Consequently, it will have to 
discover it and then learn to get to it from anywhere in the 
environment, that is, learn the VF. To this end, three distance 
sensors were set up for the robot: to the green button (g), to 
the red ball (r) and to the blue box (b). As for the actions (a), 
the robot can change its orientation by an angle between -90º 
and 90º, and later move straight a fixed distance according it. 

With this setup, we have executed ten runs of the MDB 

cognitive architecture using MotivEn to guide the action 
selection. The top plot of Fig. 2 displays the number of goals 
achieved (during the last 500 time steps) in a representative 
run of 20000 time steps. The red line corresponds to an 
execution where the certainty-based intrinsic motivation (Icb) 
was disabled, while the blue line corresponds to an execution 
with the 3 motivational components of MotivEn. As it can be 
observed by the higher number of goal achievements, the 
presence of an intrinsic motivation that promotes the VF 
improvement (Icb) is clearly more successful than using the 
extrinsic motivation directly. The bottom plot of Fig. 2 shows 
the time steps where the blind intrinsic motivation (Ib) was 
used in these two configurations. When Icb was disabled (red 
line), Ib was continuously used because the VF certainty was 
low, leading to a more random operation. When enabling Icb 
(blue line), the application of Ib was notably reduced, 
meaning that the VF was increasingly more reliable. 

 

 
Fig.  2. Goals achieved by the robot (top) and use of blind intrinsic motivation 
(bottom) in a representative execution of the simulated experiment 

IV. CONCLUSIONS 
In this paper we have presented some initial results in the 

application of MotivEn, an integrated approach to the 
combination of intrinsic and extrinsic motivations in order to 
autonomously acquire knowledge in a developmental robot. 
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